We experimentally and theoretically investigate plasma dynamics in laser filamentation in fused silica by varying the driver wavelength from 1.2 to 2.3 μm covering the near-zero to the anomalous group-velocity dispersion regimes. First, we perform femtosecond time-resolved interferometry to measure plasma densities in filaments, which unexpectedly reveals that plasma densities are not monotonically decreasing with increasing wavelength. This result is in sharp contrast to recent theoretical work in filamentation in air/gases as well as our own numerical simulations in fused silica in which the electron collision time is assumed to be constant for all the wavelengths. Therefore, to investigate further, we also perform time-resolved shadowgraphy which, combined with interferometry, enables us to determine the electron collision time in plasma. We find out that the electron collision time is not a constant for different wavelengths, which can change the plasma dynamics in filamentation significantly.
more »
« less
Characterizing Gas and Plasma Densities in Ultrafast Laser-Plasma Interactions Using Shadowgraphy, Schlieren, and Interferometry
The primary goal of this research is to use lasers to visualize and study the density gradients and flow in gases and plasma. We compare and contrast three methods of laser imaging to measure density gradients and flow in gases and plasma: (1) shadowgraphy, (2) knife-edge schlieren, and (3) two-color interferometry. The first, being the simplest, utilizes a method to visualize the density gradients sans spatial filters or reference beams. Shadowgraphy only records the spatial second derivative or Laplacian of the refractive index field, making the method largely qualitative. The second is sensitive to density gradients, but only in one direction at a time. Lastly, two-wavelength interferometry employs one wavelength which is more sensitive in the plasma while the other is more sensitive to the neutral gas, to further study, distinguish, and quantify the refractive index changes between plasma and neutral gas. Taken together, these three techniques provide a holistic insight into the flow mechanics of plasma and gases.
more »
« less
- Award ID(s):
- 2206711
- PAR ID:
- 10654067
- Publisher / Repository:
- APS DPP
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this work, we develop a differentiable rendering pipeline for visualising plasma emission within tokamaks, and estimating the gradients of the emission and estimating other physical quantities. Unlike prior work, we are able to leverage arbitrary representations of plasma quantities and easily incorporate them into a non-linear optimisation framework. The efficiency of our method enables not only estimation of a physically plausible image of plasma, but also recovery of the neutral Deuterium distribution from imaging and midplane measurements alone. We demonstrate our method with three different levels of complexity showing first that a poloidal neutrals density distribution can be recovered from imaging alone, second that the distributions of neutral Deuterium, electron density and electron temperature can be recovered jointly, and finally, that this can be done in the presence of realistic imaging systems that incorporate sensor cropping and quantisation.more » « less
-
We present time-resolved interferometry to simultaneously measure plasma densities and electron collision times for strong field laser-matter interactions. First, an intense femtosecond pump pulse generates plasma in a solid and second, a weak 800-nm femtosecond probe traverses the pump-induced plasma and is sent to an interferometer with controlled time delay between pump and probe. By analyzing the interferograms using Fourie methods, we can extract plasma densities and electron collision times in plasma simultaneously with micrometer spatial and femtosecond temporal resolutions. Using the technique, we study the plasma dynamics when a wavelength-varied (λ= 1.2-2.3 μm) pump pulse undergoes laser filamentation in solid materials.more » « less
-
null (Ed.)We report an anomalous regime of laser-matter interactions, which is created by the wavelength dependence of electron collision time during filamentation in solids. Experiments are performed using femtosecond-time-resolved interferometry by varying the filament driver wavelength from 1.2 to 2.3 μm and using a 0.8-μm probe. Information on the phase and absorption via interferometry enables simultaneous measurements of plasma densities and electron collision times during filamentation. Although it is expected that the plasma density decreases with increasing wavelength due to larger plasma-defocusing at longer wavelengths [1-4], our measured plasma densities are nearly constant for all the pump wavelengths. This observation is successfully explained by the measured wavelength-dependence of electron collision time: electron collision times in filament-produced plasma decrease with increasing wavelength, which creates an anomalous regime of plasma-defocusing where longer wavelengths experience smaller plasma defocusing. In addition, simulations with the measured electron collision times successfully reproduce the observed plasma density scaling with wavelength [5]. [1] L. Bergé et al., Phys. Rev. A 88, 023816 (2013). [2] Y. E. Geints et al., Appl. Opt. 56, 1397 (2017). [3] S. Tochitsky et al., Nat. Photonics 13, 41 (2019). [4] R. I. Grynko et al., Phys. Rev. A 98, 023844 (2018). [5] Nagar et al., submitted.more » « less
-
Abstract Non-equilibrium inductively coupled plasmas (ICPs) operating in hydrogen are of significant interest for applications including large-area materials processing. Increasing control of spatial gas heating, which drives the formation of neutral species density gradients and the rate of gas-temperature-dependent reactions, is critical. In this study, we use 2D fluid-kinetic simulations with the Hybrid Plasma Equipment Model to investigate the spatially resolved production of atomic hydrogen in a low-pressure planar ICP operating in pure hydrogen (10–20 Pa or 0.075–0.15 Torr, 300 W). The reaction set incorporates self-consistent calculation of the spatially resolved gas temperature and 14 vibrationally excited states. We find that the formation of neutral-gas density gradients, which result from spatially non-uniform electrical power deposition at constant pressure, can drive significant variations in the vibrational distribution function and density of atomic hydrogen when gas heating is spatially resolved. This highlights the significance of spatial gas heating on the production of reactive species in relatively high-power-density plasma processing sources.more » « less
An official website of the United States government

