Text-to-image models are enabling efficient design space exploration, rapidly generating images from text prompts. However, many generative AI tools are imperfect for product design applications as they are not built for the goals and requirements of product design. The unclear link between text input and image output further complicates their application. This work empirically investigates design space exploration strategies that can successfully yield product images that are feasible, novel and aesthetic – three common goals in product design. Specifically, users’ actions within the global and local editing modes, including their time spent, prompt length, mono versus multi-criteria prompts, and goal orientation of prompts, are analyzed. Key findings reveal the pivotal role of mono versus multi-criteria and goal orientation of prompts in achieving specific design goals over time and prompt length. The study recommends prioritizing the use of multi-criteria prompts for feasibility and novelty during global editing while favoring mono-criteria prompts for aesthetics during local editing. Overall, this article underscores the nuanced relationship between the AI-driven text-to-image models and their effectiveness in product design, urging designers to carefully structure prompts during different editing modes to better meet the unique demands of product design.
more »
« less
This content will become publicly available on April 25, 2026
DesignWeaver: Dimensional Scaffolding for Text-to-Image Product Design
Generative AI has enabled novice designers to quickly create professional-looking visual representations for product concepts. However, novices have limited domain knowledge that could constrain their ability to write prompts that effectively explore a product design space. To understand how experts explore and communicate about design spaces, we conducted a formative study with 12 experienced product designers and found that experts — and their less-versed clients — often use visual references to guide co-design discussions rather than written descriptions. These insights inspired DesignWeaver, an interface that helps novices generate prompts for a text-to-image model by surfacing key product design dimensions from generated images into a palette for quick selection. In a study with 52 novices, DesignWeaver enabled participants to craft longer prompts with more domain-specific vocabularies, resulting in more diverse, innovative product designs. However, the nuanced prompts heightened participants’ expectations beyond what current text-to-image models could deliver. We discuss implications for AI-based product design support tools.
more »
« less
- Award ID(s):
- 2009003
- PAR ID:
- 10654073
- Publisher / Repository:
- ACM
- Date Published:
- Page Range / eLocation ID:
- 1 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many AI system designers grapple with how best to collect human input for different types of training data. Online crowds provide a cheap on-demand source of intelligence, but they often lack the expertise required in many domains. Experts offer tacit knowledge and more nuanced input, but they are harder to recruit. To explore this trade off, we compared novices and experts in terms of performance and perceptions on human intelligence tasks in the context of designing a text-based conversational agent. We developed a preliminary chatbot that simulates conversations with someone seeking mental health advice to help educate volunteer listeners at 7cups.com. We then recruited experienced listeners (domain experts) and MTurk novice workers (crowd workers) to conduct tasks to improve the chatbot with different levels of complexity. Novice crowds perform comparably to experts on tasks that only require natural language understanding, such as correcting how the system classifies a user statement. For more generative tasks, like creating new lines of chatbot dialogue, the experts demonstrated higher quality, novelty, and emotion. We also uncovered a motivational gap: crowd workers enjoyed the interactive tasks, while experts found the work to be tedious and repetitive. We offer design considerations for allocating crowd workers and experts on input tasks for AI systems, and for better motivating experts to participate in low-level data work for AI.more » « less
-
Advances in artificial intelligence have enabled unprecedented technical capabilities, yet making these advances useful in the real world remains challenging. We engaged in a Research through Design process to improve the ideation of AI products and services. We developed a design resource capturing AI capabilities based on 40 AI features commonly used across various domains. To probe its usefulness, we created a set of slides illustrating AI capabilities and asked designers to ideate AI-enabled user experiences. We also incorporated capabilities into our own design process to brainstorm concepts with domain experts and data scientists. Our research revealed that designers should focus on innovations where moderate AI performance creates value. We reflect on our process and discuss research implications for creating and assessing resources to systematically explore AI’s problem-solution space.more » « less
-
null (Ed.)Problem framing—the process of defining a problem—has been described by many researchers and designers as the crux of the design process. However, novice designers struggle with problem framing. To better understand this process and the potential for scaffolding, we conducted two studies. In the first study, we analyzed 41 problem statements from an introductory design course and found that novices often omit key information, like the primary stakeholder or the obstacles they face. To get novices to reflect on and include necessary design information, we created a tool called ProbLib that cues novices to explicitly reflect on aspects of the problem such as the stakeholders. To evaluate this approach, we conducted a between-subjects study (N=73) to compare ProbLib with an unstructured open text form. We found that participants using ProbLib wrote higher quality statements, included more information, and were more confident about specifying design needs. We observed creative behaviors such as brainstorming and analogical reasoning.more » « less
-
Text-to-image generative models have increasingly been used to assist designers during concept generation in various creative domains, such as graphic design, user interface design, and fashion design. However, their applications in engineering design remain limited due to the models’ challenges in generating images of feasible designs concepts. To address this issue, this paper introduces a method that improves the design feasibility by prompting the generation with feasible CAD images. In this work, the usefulness of this method is investigated through a case study with a bike design task using an off-the-shelf text-to-image model, Stable Diffusion 2.1. A diverse set of bike designs are produced in seven different generation settings with varying CAD image prompting weights, and these designs are evaluated on their perceived feasibility and novelty. Results demonstrate that the CAD image prompting successfully helps text-to-image models like Stable Diffusion 2.1 create visibly more feasible design images. While a general tradeoff is observed between feasibility and novelty, when the prompting weight is kept low around 0.35, the design feasibility is significantly improved while its novelty remains on par with those generated by text prompts alone. The insights from this case study offer some guidelines for selecting the appropriate CAD image prompting weight for different stages of the engineering design process. When utilized effectively, our CAD image prompting method opens doors to a wider range of applications of text-to-image models in engineering design.more » « less
An official website of the United States government
