skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 15, 2026

Title: Coupling Remote Sensing With a Process Model for the Simulation of Rangeland Carbon Dynamics
Abstract Rangelands provide significant environmental benefits through many ecosystem services, which may include soil organic carbon (SOC) sequestration. However, quantifying SOC stocks and monitoring carbon (C) fluxes in rangelands are challenging due to the considerable spatial and temporal variability tied to rangeland C dynamics as well as limited data availability. We developed the Rangeland Carbon Tracking and Management (RCTM) system to track long‐term changes in SOC and ecosystem C fluxes by leveraging remote sensing inputs and environmental variable data sets with algorithms representing terrestrial C‐cycle processes. Bayesian calibration was conducted using quality‐controlled C flux data sets obtained from 61 Ameriflux and NEON flux tower sites from Western and Midwestern US rangelands to parameterize the model according to dominant vegetation classes (perennial and/or annual grass, grass‐shrub mixture, and grass‐tree mixture). The resulting RCTM system produced higher model accuracy for estimating annual cumulative gross primary productivity (GPP) (R2 > 0.6, RMSE <390 g C m−2) relative to net ecosystem exchange of CO2(NEE) (R2 > 0.4, RMSE <180 g C m−2). Model performance in estimating rangeland C fluxes varied by season and vegetation type. The RCTM captured the spatial variability of SOC stocks withR2 = 0.6 when validated against SOC measurements across 13 NEON sites. Model simulations indicated slightly enhanced SOC stocks for the flux tower sites during the past decade, which is mainly driven by an increase in precipitation. Future efforts to refine the RCTM system will benefit from long‐term network‐based monitoring of vegetation biomass, C fluxes, and SOC stocks.  more » « less
Award ID(s):
2425290
PAR ID:
10654210
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
John Wiley & Sons, Inc.
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
17
Issue:
3
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The purpose of this study is to develop an unmanned aerial vehicle (UAV)‐based remote sensing method that can estimate vegetation indicators in arid and semiarid rangelands. This method was used to quantify six rangeland indicators (canopy size, bare soil gap size, plant height, scaled height, vegetation cover, and bare soil cover) in a semiarid grass–shrub ecosystem. The drone‐based estimates were validated with field measurements by using the standard transect methods (gap intercept, drop disk, and line‐point intercept methods) in the spring and summer of 2017. The drone‐based estimates showed strong agreements with in situ measurements in cases where deciduous vegetation (mesquite) had leaves withR2for bare soil gap size and vegetation height of 0.97 and 0.89 in the summer, respectively. The RMSE of bare soil gap size and vegetation height are 0.2 m and 6.72 cm in the summer, respectively. Based on these results, we found that drone‐based remote sensing proved to be an efficient and highly accurate method that serves as a complement to field measurements for rangeland indicator estimation. We discussed the possible applications of drone‐based products on arid and semiarid rangelands: the spatially explicit input of an ecological model, to detect and characterize non‐stationarity, and to detect landscape anisotropy. 
    more » « less
  2. Abstract The National Ecological Observatory Network (NEON) provides open-access measurements of stable isotope ratios in atmospheric water vapor (δ2H, δ18O) and carbon dioxide (δ13C) at different tower heights, as well as aggregated biweekly precipitation samples (δ2H, δ18O) across the United States. These measurements were used to create the NEON Daily Isotopic Composition of Environmental Exchanges (NEON-DICEE) dataset estimating precipitation (P; δ2H, δ18O), evapotranspiration (ET; δ2H, δ18O), and net ecosystem exchange (NEE; δ13C) isotope ratios. Statistically downscaled precipitation datasets were generated to be consistent with the estimated covariance between isotope ratios and precipitation amounts at daily time scales. Isotope ratios in ET and NEE fluxes were estimated using a mixing-model approach with calibrated NEON tower measurements. NEON-DICEE is publicly available on HydroShare and can be reproduced or modified to fit user specific applications or include additional NEON data records as they become available. The NEON-DICEE dataset can facilitate understanding of terrestrial ecosystem processes through their incorporation into environmental investigations that require daily δ2H, δ18O, and δ13C flux data. 
    more » « less
  3. Abstract Carbon fluxes in terrestrial ecosystems and their response to environmental change are a major source of uncertainty in the modern carbon cycle. The National Ecological Observatory Network (NEON) presents the opportunity to merge eddy covariance (EC)‐derived fluxes with CO2isotope ratio measurements to gain insights into carbon cycle processes. Collected continuously and consistently across >40 sites, NEON EC and isotope data facilitate novel integrative analyses. However, currently provisioned atmospheric isotope data are uncalibrated, greatly limiting ability to perform cross‐site analyses. Here, we present two approaches to calibrating NEON CO2isotope ratios, along with an R package to calibrate NEON data. We find that calibrating CO2isotopologues independently yields a lowerδ13C bias (<0.05‰) and higher precision (<0.40‰) than directly correctingδ13C with linear regression (bias: <0.11‰, precision: 0.42‰), but with slightly higher error and lower precision in calibrated CO2mole fraction. The magnitude of the corrections toδ13C and CO2mole fractions vary substantially by site, underscoring the need for users to apply a consistent calibration framework to data in the NEON archive. Post‐calibration data sets show that site mean annualδ13C correlates negatively with precipitation, temperature, and aridity, but positively with elevation. Forested and agricultural ecosystems exhibit larger gradients in CO2andδ13C than other sites, particularly during the summer and at night. The overview and analysis tools developed here will facilitate cross‐site analysis using NEON data, provide a model for other continental‐scale observational networks, and enable new advances leveraging the isotope ratios of specific carbon fluxes. 
    more » « less
  4. Abstract Stable isotope ratios of H (δ2H), O (δ18O), and C (δ13C) are linked to key biogeochemical processes of the water and carbon cycles; however, the degree to which isotope-associated processes are reflected in macroscale ecosystem flux observations remains unquantified. Here through formal information assessment, new measurements ofδ13C of net ecosystem exchange (NEE) as well asδ2H andδ18O of latent heat (LH) fluxes across the United States National Ecological Observation Network (NEON) are used to determine conditions under which isotope measurements are informative of environmental exchanges. We find all three isotopic datasets individually contain comparable amounts of information aboutNEEandLHfluxes as wind speed observations. Such information from isotope measurements, however, is largely unique. Generally,δ13C provides more information aboutLHas aridity increases or mean annual precipitation decreases.δ2H provides more information aboutLHas temperatures or mean annual precipitation decreases, and also provides more information aboutNEEas temperatures decrease. Overall, we show that the stable isotope datasets collected by NEON contribute non-trivial amounts of new information about bulk environmental fluxes useful for interpreting biogeochemical and ecohydrological processes at landscape scales. However, the utility of this new information varies with environmental conditions at continental scales. This study provides an approach for quantifying the value adding non-traditional sensing approaches to environmental monitoring sites and the patterns identified here are expected to aid in modeling and data interpretation efforts focused on constraining carbon and water cycles’ mechanisms. 
    more » « less
  5. Soil organic carbon (SOC) represents the largest terrestrial carbon pool. Effectively monitoring SOC at high spatial resolution is crucial for estimating carbon budgets at the ecosystem scale and informing climate change mitigation efforts at the regional scale. Traditional soil sampling methods, however, are laborious and expensive. Remote sensing platforms can be used to survey large landscapes to meet the need for rapid and cost-effective approaches for quantifying SOC at landscape to regional scales, if relationships between remotely sensed variables and SOC can be established. We developed a workflow to analyze and predict SOC content based on National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) remote sensing data. First, we benchmarked related tools and developed reproducible workflows using NEON remote sensing datasets. Hyperspectral data were extracted from the locations where NEON soil data exist. Additional variables from the LiDAR data and key metadata (climate and land cover) were extracted for those locations. Random Forest and Partial Least Squares Regression techniques were then used to create models for fine-scale SOC prediction. Cross-validation was embedded in the model creation step. The most important covariates were selected through recursive feature elimination, stepwise selection, and expert judgment. Preliminary results indicate that machine learning models can re-produce SOC measurements in testing datasets. Key predictors include topographic variables, vegetation indices, and specific wavelength bands in hyperspectral images. We are further validating our algorithms using SOC data from ISCN (International Soil Carbon Network) and SoDaH (SOils DAta Harmonization database) that are co-located with NEON sites. We are creating high-resolution SOC maps for 0-30 cm depth at NEON sites and testing our algorithms for different land use types. Our work paves the way for a broader assessment of SOC stocks using remote sensing observations, and our high-resolution SOC maps will potentially help quantify carbon budgets across heterogeneous landscapes. 
    more » « less