ABSTRACT Ecological stability plays a crucial role in determining the sustainability of ecosystem functioning and nature's contribution to people. Although the disruptive effects of extreme drought on ecosystem structure and functions are widely recognized, their effect on the stability of above‐ and belowground productivity remains understudied. We assessed the effects of drought on ecosystem stability using a 3‐year drought experiment established in six Eurasian steppe grasslands. The treatments imposed included ambient precipitation, chronic drought (66% reduction in precipitation throughout the growing season), and intense drought (complete exclusion of precipitation for two months during the growing season). We found that drought, irrespective of how it was imposed, reduced the stability of aboveground net primary productivity (ANPP) but had little impact on belowground net primary productivity (BNPP) stability. Reduced ANPP stability under drought was primarily attributed to changes in subordinate species stability, with mean annual precipitation (MAP) and its variability, historical drought frequency, and the aridity index (AI) also influencing responses to extreme drought. In contrast, BNPP stability was not related to any community factor investigated, but it was influenced by MAP variability and AI. Our findings that above‐ and belowground productivity stability in grasslands are differentially sensitive to multi‐year extreme drought under both common (MAP and AI) as well as unique drivers (plant community changes) highlight the complexity of predicting carbon cycle dynamics as hydrological extremes become more severe.
more »
« less
Small rainfall events increase belowground production in Chihuahuan Desert grassland
Abstract Dryland productivity is highly sensitive to precipitation variability, and models predict that rainfall variability will increase in the future. Numerous studies have documented the relationship between productivity and precipitation, but most focus on aboveground production (ANPP), while the effects on belowground production (BNPP) remain poorly understood. Furthermore, previous research suggests that ANPP and BNPP are uncoupled within ecosystems, but the degree to which rainfall variability affects the interplay between aboveground and belowground production is unknown. We conducted a long‐term rainfall manipulation experiment in Chihuahuan Desert grassland to investigate how the size and frequency of growing season rain events affected BNPP and its relationship to ANPP. Experimental plots received either 12 small‐frequent rain events or 3 large‐infrequent events during the monsoon season for a total of 60 mm of added rainfall per treatment per year. All plots, including three controls, received ambient rainfall throughout the year. Total BNPP ranged from a low of 94.7 ± 38.2 g m2year−1under ambient conditions to a high of 183.7 ± 44.6 g m2year−1under the small‐frequent rainfall treatment. Total BNPP was highest under small‐frequent rain events, and there was no difference in BNPP between 0–15 and 15–30 cm soil depths in either rainfall treatment. ANPP and BNPP were uncorrelated within rainfall treatments, but weakly positively correlated across all plots and years. Our results contribute to a growing body of research on the importance of small rain events in drylands and provide further evidence regarding the weak coupling between aboveground and belowground processes.
more »
« less
- Award ID(s):
- 2425290
- PAR ID:
- 10654323
- Publisher / Repository:
- John Wiley & Sons, Ltd.
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 106
- Issue:
- 9
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset contains cover and biomass data collected starting in 2012 for a long-term precipitation variability manipulation experiment at the Jornada Basin LTER site in southern New Mexico, U.S.A. The study was designed to assess the effect of interannual variability in precipitation on average aboveground net primary productivity (ANPP) in Chihuahuan Desert grasslands. The study began in 2009, has five annual precipitation treatments, and contains 50 plots (10 per treatment). This experiment uses precipitation shelters and irrigation treatments to manipulate water inputs to 2.5 x 2.5 meter plots in a desert grassland. There are high, low, and ambient (control) precipitation variability treatments. Ambient plots receive natural precipitation each year, while variability treatments alternate between 20% and 180% (high variability), or 50% and 150% (low variability) of ambient precipitation each year. Plant cover measurements are made annually in each plot, from which biomass or net primary production are derived. This is an ongoing study and the dataset will be updated yearly.more » « less
-
Abstract The predicted intensification of the North American Monsoon is expected to alter growing season rainfall patterns in the southwestern United States. These patterns, which have historically been characterized by frequent small rain events, are anticipated to shift towards a more extreme precipitation regime consisting of fewer, but larger rain events. Furthermore, human activities are contributing to increased atmospheric nitrogen deposition throughout this dryland region.Alterations in rainfall size and frequency, along with changes in nitrogen availability, are likely to have significant consequences for above‐ground net primary production (ANPP) and plant community dynamics in drylands. The conceptual bucket model predicts that a shift towards fewer, but larger rain events could promote greater rates of ANPP in these regions by maintaining soil moisture availability above drought stress thresholds for longer periods during the growing season. However, only a few short‐term studies have tested this hypothesis, and none have explored the interaction between altered rainfall patterns and nitrogen enrichment.To address this knowledge gap, we conducted a 14‐year rainfall addition and nitrogen fertilization experiment in a northern Chihuahuan Desert grassland to explore the long‐term impacts of changes in monsoon rainfall size and frequency, along with chronic nitrogen enrichment, on ANPP (measured as peak biomass) and plant community dynamics.Contrary to bucket model predictions, small frequent rain events promoted comparable rates of ANPP to large infrequent rain events in the absence of nitrogen enrichment. It was only when nitrogen limitation was alleviated that large infrequent rain events resulted in the greatest ANPP. Furthermore, we found that nitrogen enrichment had the greatest impact on plant community composition under the small frequent rainfall regime.Synthesis. Our long‐term field experiment highlights limitations of the bucket model by demonstrating that water and nitrogen availability sequentially limit dryland ecological processes. Specifically, our findings suggest that while water availability is the primary limiting factor for above‐ground net primary production in these ecosystems, nitrogen limitation becomes increasingly important when water is not limiting. Moreover, our findings reveal that small frequent rain events play an important but underappreciated role in driving dryland ecosystem dynamics.more » « less
-
This dataset contains perennial grass tiller and stolon counts collected starting in 2012 for a long-term precipitation variability manipulation experiment at the Jornada Basin LTER site in southern New Mexico, U.S.A. The study was designed to assess the effect of interannual variability in precipitation on average aboveground net primary productivity (ANPP) in Chihuahuan Desert grasslands. The study began in 2009, has five annual precipitation treatments, and contains 50 plots (10 per treatment). This experiment uses precipitation shelters and irrigation treatments to manipulate water inputs to 2.5 x 2.5 meter plots in a desert grassland. There are high, low, and ambient (control) precipitation variability treatments. Ambient plots receive natural precipitation each year, while variability treatments alternate between 20% and 180% (high variability), or 50% and 150% (low variability) of ambient precipitation each year. Perennial grass tiller and stolon counts were made annually in each plot from 2012-2014. This is an ongoing study and the dataset will be updated as needed.more » « less
-
Predicted climate change extremes, such as severe and prolonged drought, may profoundly impact biogeochemical processes like carbon and nitrogen cycling in water-limited ecosystems. To increase our understanding of how extreme climate events impact belowground ecosystem processes, we investigated the effects of five years of severe growing season drought and two-month delay in monsoon precipitation on belowground productivity and biogeochemical processes in two semi-arid grasslands. This experiment takes place during the fifth year of the Extreme Drought in Grassland Experiment (EDGE) at the Sevilleta National Wildlife Refuge (SNWR), a Long-Term Ecological Research in central New Mexico, USA. The two grassland sites a Chihuahuan Desert grassland dominated by Bouteloua eriopoda and Great Plains grassland dominated by B. gracilis are ~5km apart in the SWNR. The EDGE platform was established in the spring of 2012 (pre-treatment). Each site contains three treatments (ten replicates): ambient rainfall, extreme growing season drought, and delayed monsoon. The extreme drought treatment reduces growing season rainfall (April through September) each year by 66%, which equates to a 50% reduction of annual precipitation while maintaining natural precipitation patterns. There are 10 replicates per treatment within each site. All plots are 3 x 4 m in size and are paired spatially into blocks with treatments assigned randomly within a block. We measured an array of belowground and biogeochemical variables. Each variable was measured either once, twice, or three times (specific information on sampling scheme for each measured variable in methods section). Belowground net primary productivity, standing crop root biomass, total organic carbon, and total nitrogen were measured once. Extractable organic carbon, extractable total nitrogen, microbial biomass carbon, microbial biomass nitrogen and extracellular enzymes were measured twice. Available soil nitrate, available soil ammonium, and available soil phosphate were measured three times.more » « less
An official website of the United States government

