skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data for Revisiting the Last Ice Area Projections from a High-Resolution Global Earth System Model
This dataset contains data used in the paper: Revisiting the Last Ice Area Projections from a High-Resolution Global Earth System Model - Fol et al (2025). Results are organized in excel files or numpy arrays with the dataset name, variable and ensemble member (for simulations) in the name of the file. See below for more information on what variables are included in the files and their structure.  CESM_HR :  CESM_HR_SIAFluxes - per ensemble member: Timeseries of monthly SIA flux per gate. CESM_HR_fluxesCAADiv.npy, _fluxesQEIDiv.npy, _fuxesQEIDivMeltSeason.npy : Timeseries of annual divergence over the Queen Elizabeth Islands and the Southern Canadian Arctic Archipelago derived from monthly SIA fluxes at the entry and exit gates. CESM_HR_ThicknessDistribution.xlsx : Thickness distribution for the LIA-N, QEI, and CAA-S computed from the simulated thickness distribution (aicen001, aicen002, aicen003, aicen004, aicen005). CESM_HR_tendencies - per ensemble member- per region (LIA-N, QEI, CAA-S). Timeseries of melt season integrated thermodynamic, dynamic (advection and ridging terms) sea ice area loss. CESH_HR_sitPanArctic - per ensemble member: Timeseries of pan-Arctic mean may sea ice thickness. CESM_HR_sieSept and CESM_HR_sieMarch - per ensemble member- per region (LIA-N, QEI, CAA-S) and pan-Arctic : Timeseries of March or September sea ice extent, sea ice area. CESM_HR_sic - per ensemble member- per region (LIA-N, QEI, CAA-S): Timeseries of mean sea ice concentration for grid cells having more than 15% of SIC (no open water).  CESM_HR_meltSeason - per ensemble member- per region (LIA-N, QEI, CAA-S): Timeseries of annual freeze and melt onset dates allowing the definition of the melt season based on the thermodynamic sea ice area tendency crossing 0.  CESM_HR_mean_mayThickness.npy and CESM_HR_meanseptconc.npy: Results for map of the mean september sea ice concentration and may ice thickness for 1981-2000, 2001-2020, 2021-2040 and 2041-2060. CESM_LR :  CESM_LR_sieSept - per region (LIA-N, QEI, CAA-S) and pan-Arctic: Timeseries of September sea ice extent and sea ice area. CESM_LR_sitPanArctic.xlsx: Timeseries of pan-Arctic mean May sea ice thickness. CESM_LR_tendencies - per region (LIA-N, QEI, CAA-S). Timeseries of melt season integrated thermodynamic, dynamic (advection and ridging terms) sea ice area loss. CESM_LR_meltSeason - per region (LIA-N, QEI, CAA-S): Timeseries of annual freeze and melt onset dates allowing the definition of the melt season based on the thermodynamic sea ice area tendency crossing 0. CESM2_LE:  CESM2_LE_CAA_sept, _LIAN_sept, _QEI_sept, panArctic: Mean September sea ice extent and sea ice area per region. There is one excel tab per ensemble member in each file. CESM2_LE_pan_Arctic_hi_may: Pan-Arctic mean May sea ice thickness. There is one excel tab per ensemble member in each file. PIOMAS:  PIOMAS_panArctic_hi.xlsx: Timeseries of mean may sea ice thickness. PIOMAS_mean_1981_2000_mean_mayThickness.npy : Results for map of the mean May ice thickness for 1981-2000 and 2001-2020. Observations: CIS_marchSept_1982_1990_sie - per region (QEI and CAA-S) :  Timeseries of March and September mean sea ice extent and area. CIS ice charts do not fully cover the LIA-N.  NSDICCDR_1979_2023_sia - per region (LIA-N, QEI, CAA-S) and pan-Arctic : Timeseries of March and September mean sea ice extent and area. NSDICCDR_1981_2000_mean_septConc.npy: Results for map of the mean September sea ice concentration for 1981-2000 and 2001-2020. NSDICCDR_1981_2000_LIAN_sic.xlsx: Timeseries of monthly mean sea ice concentration in the LIA-N. NSDICCDR_1981_2000_QEI_sic.xlsx: Timeseries of monthly mean sea ice concentration in the QEI. These results are derived from the following datasets:  Ensemble members 1 and 3 of simulations from the high-resolution Community Earth System Model version 1.3 (CESM1.3-HR) produced for the International Laboratory for High-Resolution Earth System Prediction (iHESP) by the Qingdao National Laboratory for Marine Science and Technology (QNLM), Texas A&M University (TAMU), and the U.S. National Center for Atmospheric Research (NCAR). The lower resolution simulation is also used (CESM1.3-LR). (Chang et al., 2020; Zhang et al., 2020). The 100-ensemble members Community Earth System Model (version 2) Large Ensemble (CESM2-LE) (Danabasoglu et al., 2020). Satellite-derived monthly mean SIA fluxes through entry and exit gates of the CAA and Nares Strait (Howell et a., 2019; 2021; 2023; 2024; Smedsrud et al., 2017; Kwok, 2006). The National Snow and Ice Data Center (NSIDC) Climate Data Record (CDR) (version 4) sea ice concentration, stored on a 25 x 25 km polar stereographic grid centered on the North Pole from 1979 to 2023 (Meier et al., 2021). The gridded version of the regional Canadian Ice Service (CIS) Digital Archive ice charts from the Eastern and Western Arctic regions (Tivy et al., 2011). The Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) assimilated sea ice concentration and derived ice thickness distribution estimates in the Arctic from 1978 to 2022 (Zhang et al., 2000).    more » « less
Award ID(s):
1928126
PAR ID:
10654354
Author(s) / Creator(s):
Publisher / Repository:
Zenodo
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset contains the daily Arctic sea ice area (SIA) and sea ice extent (SIE) data for all CMIP6 models and the historical period based on the NOAA/NSIDC Climate Data Record (CDR) created for Heuzé and Jahn, The first ice-free day in the Arctic Ocean could occur before 2030, accepted, Nature Communications. This is a derived dataset based on publicly available underlying data: - For the CMIP6 data, the SIA and SIE data included here is based on the daily siconc and siconca CMIP6 model output freely available on the CMIP6 data portals (https://pcmdi.llnl.gov/CMIP6/). These pan-Arctic daily SIA and SIE were calculated north of 30N, on each model's native grid, using each models grid area data (areacello or areacella). SIA was defined as sea ice concentration multiplied by the grid cell area and summed over all grid cells. SIE was defined as the sum of the grid cell area for all grid cells where the sea ice concentration was larger than 0.15. All processed SIA and SIE data is included in this dataset, even if the model was later excluded from the analysis for one reason or another (see Heuzé and Jahn 2024, Methods section). All data included has the same number of days as the underlying model. The historical data spans 1980-2014 and can be found in the CMIP6_historical_data.zip file, and the scenario data spans 2015 to the end of the 21st century simulation, for multiple scenarios (SSPs), and can be found in CMIP6_ssp_data.zip. Files are provided as .zip files to make it easy to download all data at once, as the SIA and SIE data is saved in one file per model and ensemble member, and for the scenario simulations, also per ssp. - For the NOAA/NSIDC Climate Data Record (CDR), the SIA and SIE data included here is based on the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4, doi:10.7265/efmz-2t65, Meier et al 2021. The sea ice concentration is multiplied by the grid size of each grid box, for this data, 25x25 kilometers (km) = 625 kilometers squared (km2), and then summed over the full domain. In doing that, we include the interpolated data in the pole hole as included in the sea ice concentration data, but exclude all land/coastal grid points (i.e., values > 2.5 in the underlying data). As the filename indicates, we removed all leap year data from this data (dropped every Feb 29th) so that all years have 365 days. Note that while the file name says this data is for 19790101 to 20231231, it does indeed include 1978 as first year (so 1978-01-01-2023-12-31), with daily data starting on 1978-10-25 (nan before then). We did not change the name of the data file to still allow all archived scripts using this datafile to run. Scripts that work on this data associated with Heuzé and Jahn (2024) can be found at: https://zenodo.org/records/14008665, doi:10.5281/zenodo.14006059 References: Meier, W. N., F. Fetterer, A. K. Windnagel, and S. Stewart. 2021. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. Boulder, Colorado, USA. NSIDC: National Snow and Ice Data Center https://doi.org/10.7265/efmz-2t65 
    more » « less
  2. This dataset includes statistically resampled monthly time series data of Arctic sea ice area and gridded data for March and September for sea ice concentration for a selection of large ensemble climate models and observational datasets. Arctic sea ice concentrations and areas are resampled from all available members of six coupled climate models from the Coupled Model Intercomparison Project 5 (CMIP5). These six models are: The second generation Canadian Earth System Model (CanESM2), The Community Earth System Mode version 1 (CESM1), The Commonwealth Scientific and Industrial Research Organisation Global Climate Model Mark 3.6 (CSIRO MK3.6), The Geophysical Fluid Dynamics Laboratory Coupled Climate Model version 3 (GFDL CM3), Geophysical Fluid Dynamics Laboratory Earth System Model version 2 with Modular Ocean Model version 4.1 (GFDL ESM2M), Max Planck Institute Earth System Model version 1 (MPI ESM1). The Four observational datasets are The Hadley Centre Sea Ice and Sea Surface Temperature data set version 1 (HadISST1), The National Oceanic and Atmospheric Administration and National Snow and Ice Data Center Climate Data Record Version 4 (CDR), The The National Aeronautics and Space Administration Team Algorithm (NT), and the The National Aeronautics and Space Administration Bootstrap Team Algorithm (BT). The sea ice area data is resampled 10,000 times and then the standard deviation of those resamplings is calculated, which can be considered analagous to interannual variability of sea ice area (SIA). The standard deviation (sigma) and mean (mu) of these data represent the variability and typical values respectively of interannual variability found in each ensemble member or observational dataset. Sea ice concentration is resampled 1000 times with the same standard deviation and mean metrics for sea ice concentration. This dataset was created to evaluate climate model projections of Arctic sea ice interannual variability and is used in the article Wyburn-Powell, Jahn, England (2022), Modeled Interannual Variability of Arctic Sea Ice Cover is Within Observational Uncertainty, Journal of Climate, https://doi.org/10.1175/JCLI-D-21-0958.1. This work was conducted at the University of Colorado Boulder from 2020-2022. The figures from the Journal of Climate article can be reproduced from the following datasets. The code used to create the datasets can be located at https://www.doi.org/10.5281/zenodo.6687725. - Figure 1: Sigma_obs_SIA.nc - Figure 2: Sigma_obs_SIA.nc, Mu_obs_SIA.nc, Sigma_mem_SIA.nc, Mu_mem_SIA.nc - Figure 3: Sigma_mem_varying_time_periods_1965_2066_03.nc, Sigma_LE_varying_time_periods_1965_2066_03.nc, Sigma_LE_varying_time_periods_1970_2040_09.nc, Sigma_obs_varying_time_periods_1953_2020.nc - Figure 4: Sigma_obs_SIA.nc, Sigma_mem_SIA.nc - Figure 5: Sigma_obs_SIA.nc - Figure 6: <model_name>_resampled_0<month>_individual.nc, <observational_dataset>_resampled_individual_1979_2020_03_09.nc - Figure 7: Sigma_obs_SIA.nc, Mu_obs_SIA.nc, Sigma_mem_SIA.nc, Mu_mem_SIA.nc - Figure 8: <model_name>_resampled_0<month>_individual.nc, <observational_dataset>_resampled_individual_1979_2020_03_09.nc - Figure 9: Sigma_mem_SIA.nc, Sigma_LE_SIA.nc 
    more » « less
  3. Abstract Observations show predictive skill of the minimum sea ice extent (Min SIE) from late winter anomalous offshore ice drift along the Eurasian coastline, leading to local ice thickness anomalies at the onset of the melt season—a signal then amplified by the ice–albedo feedback. We assess whether the observed seasonal predictability of September sea ice extent (Sept SIE) from Fram Strait Ice Area Export (FSIAE; a proxy for Eurasian coastal divergence) is present in global climate model (GCM) large ensembles, namely the CESM2-LE, GISS-E2.1-G, FLOR-LE, CNRM-CM6-1, and CanESM5. All models show distinct periods where winter FSIAE anomalies are negatively correlated with the May sea ice thickness (May SIT) anomalies along the Eurasian coastline, and the following Sept Arctic SIE, as in observations. Counterintuitively, several models show occasional periods where winter FSIAE anomalies are positively correlated with the following Sept SIE anomalies when the mean ice thickness is large, or late in the simulation when the sea ice is thin, and/or when internal variability increases. More important, periods with weak correlation between winter FSIAE and the following Sept SIE dominate, suggesting that summer melt processes generally dominate over late-winter preconditioning and May SIT anomalies. In general, we find that the coupling between the winter FSIAE and ice thickness anomalies along the Eurasian coastline at the onset of the melt season is a ubiquitous feature of GCMs and that the relationship with the following Sept SIE is dependent on the mean Arctic sea ice thickness. 
    more » « less
  4. Abstract. Basic statistical metrics such as autocorrelations and across-region lagcorrelations of sea ice variations provide benchmarks for the assessments offorecast skill achieved by other methods such as more sophisticatedstatistical formulations, numerical models, and heuristic approaches. In thisstudy we use observational data to evaluate the contribution of the trend tothe skill of persistence-based statistical forecasts of monthly and seasonalice extent on the pan-Arctic and regional scales. We focus on the BeaufortSea for which the Barnett Severity Index provides a metric of historicalvariations in ice conditions over the summer shipping season. The varianceabout the trend line differs little among various methods of detrending(piecewise linear, quadratic, cubic, exponential). Application of thepiecewise linear trend calculation indicates an acceleration of the winterand summer trends during the 1990s. Persistence-based statistical forecastsof the Barnett Severity Index as well as September pan-Arctic ice extent showsignificant statistical skill out to several seasons when the data includethe trend. However, this apparent skill largely vanishes when the data aredetrended. In only a few regions does September ice extent correlatesignificantly with antecedent ice anomalies in the same region more than 2months earlier. The springtime “predictability barrier” in regionalforecasts based on persistence of ice extent anomalies is not reduced by theinclusion of several decades of pre-satellite data. No region showssignificant correlation with the detrended September pan-Arctic ice extent atlead times greater than a month or two; the concurrent correlations arestrongest with the East Siberian Sea. The Beaufort Sea's ice extent as farback as July explains about 20 % of the variance of the Barnett SeverityIndex, which is primarily a September metric. The Chukchi Sea is the onlyother region showing a significant association with the Barnett SeverityIndex, although only at a lead time of a month or two. 
    more » « less
  5. We investigate sea ice conditions during the 2020 melt season, when warm air temperature anomalies in spring led to early melt onset, an extended melt season, and the second-lowest September minimum Arctic ice extent observed. We focus on the region of the most persistent ice cover and examine melt pond depth retrieved from Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) using two distinct algorithms in concert with a time series of melt pond fraction and ice concentration derived from Sentinel-2 imagery to obtain insights about the melting ice surface in three dimensions. We find the melt pond fraction derived from Sentinel-2 in the study region increased rapidly in June, with the mean melt pond fraction peaking at 16 % ± 6 % on 24 June 2020, followed by a slow decrease to 8 % ± 6 % by 3 July, and remained below 10 % for the remainder of the season through 15 September. Sea ice concentration was consistently high (>95 %) at the beginning of the melt season until 4 July, and as floes disintegrated, it decreased to a minimum of 70 % on 30 July and then became more variable, ranging from 75 % to 90 % for the remainder of the melt season. Pond depth increased steadily from a median depth of 0.40 m ± 0.17 m in early June and peaked at 0.97 m ± 0.51 m on 16 July, even as melt pond fraction had already started to decrease. Our results demonstrate that by combining high-resolution passive and active remote sensing we now have the ability to track evolving melt conditions and observe changes in the sea ice cover throughout the summer season. 
    more » « less