Across many ecto‐ and endothermic organisms, climate change has induced a general shift towards smaller body sizes. Several existing hypotheses (e.g., Temperature Size Rule—TSR, metabolic theory) contribute to our understanding of climate‐driven changes in body size. However, empirical support for climate‐induced reductions in body size is mixed with some species growing larger under warmer temperatures, and underlying mechanisms are under debate. To address these inconsistencies, we used Bayesian hierarchical modeling to determine if mean length‐at‐age (proxy for growth) changed from 1945 to 2020 for age classes of 13 freshwater fish species. Then, we used boosted regression trees (BRTs) to disentangle the impacts of climate change on growth from other environmental factors. Hierarchical modeling revealed that 37% of age classes were decreasing in mean length through time (69% were qualitatively decreasing). BRTs demonstrated that growing degree days and mean annual surface water temperature had varying effects on growth. For cold‐and cool‐water adapted fishes, length‐at‐age usually increased as a function of degree days but decreased as a function of surface temperature. Warm‐water adapted fishes, however, typically decreased in response to both degree days and surface temperature. The direction of change in length‐at‐age as a function of surface temperature corresponded to the direction of change over time for 62% (8/13) of species. Overall, we found widespread decreases in length, including age classes from all thermal guilds and juveniles (contrary to TSR assumptions). Mixed results in prior literature may result from choosing different variables to represent climate warming and/or not considering age‐specific length responses. When specific climate variables and age are considered, climate change effects on body size may be more predictable at large temporal and spatial scales than previously thought. Continued decreases in length for the youngest and oldest fishes could lead to biodiversity loss and diminished ecosystem functions and services.
more »
« less
This content will become publicly available on March 19, 2026
Mismatch between climate-based bioenergetics model of fish growth and long-term and regional-scale empirical data
Climate-driven decreases in body size have been documented for a variety of taxa and proposed as a universal response to climate change. However, empirical support among taxa, including fishes, has been mixed, with some fishes growing larger at higher temperatures, and causal mechanisms for faster or slower growth under debate. We simulated effects of climate warming on bluegill (Lepomis macrochirus) growth and consumption and used linear regression and boosted regression trees (BRTs) to model length-at-age for bluegill from Michigan lakes from 1945 to 2019. Bioenergetics models showed bluegill growth and consumption both increase under climate warming. In contrast, linear regression revealed that bluegill ages 1–4 decreased (–0.20 to –0.55 mm/year) in mean length-at-age and that ages 5–8 increased or did not statistically change. BRTs demonstrated that growth had a unimodal relationship with surface water temperature and degree days, peaking at intermediate values. This mismatch between simulations and empirical data may be from increased recruitment leading to increased food limitation at higher temperatures. Future research should empirically test this hypothesis and assess the consequences for ecosystem functions and services.
more »
« less
- Award ID(s):
- 2228256
- PAR ID:
- 10654397
- Publisher / Repository:
- Canadian Journal of Fisheries and Aquatic Sciences
- Date Published:
- Journal Name:
- Canadian Journal of Fisheries and Aquatic Sciences
- Volume:
- 82
- ISSN:
- 0706-652X
- Page Range / eLocation ID:
- 1 to 15
- Subject(s) / Keyword(s):
- fish growth, temperature, bioenergetics, climate change, bluegill, long-term data, Michigan, lakes, food limitation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lakes are vulnerable to climate change, and warming rates in the Arctic are faster than anywhere on Earth. Fishes are sensitive to changing temperatures, which directly control physiological processes. Food availability should partly dictate responses to climate change because energetic demands change with temperature, but few studies have simultaneously examined temperature and food availability.We used a fully factorial experiment to test effects of food availability and temperature (7.6, 12.7, and 17.4°C; 50 days) on growth, consumption, respiration, and excretion, and effects of temperature (12 and 19.3°C; 27 days) on habitat use and growth of a common, but understudied, mid‐level consumer, slimy sculpinCottus cognatus, in arctic lakes. We also used bioenergetics modelling to predict consumptive demand under future warming scenarios.Growth rates were 3.4× higher at 12.7°C in high food compared to low food treatments, but the magnitude of differences depended on temperature. Within low food treatments, there was no statistical difference in growth rates among temperatures, suggesting food limitation. Consumption, respiration, and nitrogen excretion increased with temperature independent of food availability. Lower growth rates coincided with lower phosphorus excretion at the highest temperature, suggesting that fish selectively retained phosphorus at high temperatures and low food. In habitat choice experiments, fish were more likely to use the 12°C side of the tank, closely matching their optimal temperature. We predicted a 9% increase in consumption is required to maintain observed growth under a 4°C warming scenario.These results highlight considering changes in food resources and other associated indirect effects (e.g. excretion) that accompany changing temperatures with climate change. Depending on how food webs respond to warming, fish may cope with predicted warming if density‐dependent feedback maintains population sizes.more » « less
-
The Arctic is experiencing warming and ecological shifts due to climate change and the compounded effects of polar amplification. Arctic Alaskan coastal marsh environments, such as the Cape Espenberg barrier beach system, offers an opportunity to determine the carbon cycle response to changing climate in sediment records that have been preserved through time as a shoreline-parallel, linear geometry prograding geomorphic features. This study determines the carbon and mineral accumulation trends in marsh environments at Cape Espenberg for both paleo (pre 1850 after death [AD]) and modern (post 1850 AD) timeframes. A comprehensive physical and chemical dataset, including radioisotope (Caesium-137 [137Cs], Lead-210 [210Pb], Carbon-14 [14C]), stable isotope (delta-13 Carbon [δ13C]), element concentration (%Carbon [C], %Nitrogen [N], C:N), and dry bulk density, has been built for several sediment cores. Results indicate carbon and mineral accumulations have increased from paleo to modern times, potentially due to better growing and/or preservation conditions for organic matter under a modern climate. Paleoclimate trends in the Medieval Climate Anomaly (MCA), and warm periods interspersed within the Little Ice Age (LIA), also correlate to greater contributions of wetland organic matter as evidenced by lighter δ13C values. Cold climate periods within the Little Ice Age correlate with increased aquatic organic matter sourcing and heavier δ13C values with some spikes of wetland sources interspersed throughout the LIA. Modern warming may potentially continue to expand carbon stores in Arctic coastal wetlands as future temperatures are predicted to rise with global climate change, as observed in the swale environments at Cape Espenberg, where increasingly favorable growing and soil preservation conditions (i.e. wet/anoxic soils and lower salinity to limit organic material decay, higher temperatures to promote growth) may result in future Arctic coastal carbon reservoirs.more » « less
-
The Arctic is experiencing warming and ecological shifts due to climate change and the compounded effects of polar amplification. Arctic Alaskan coastal marsh environments, such as the Cape Espenberg barrier beach system, offers an opportunity to determine the carbon cycle response to changing climate in sediment records that have been preserved through time as a shoreline-parallel, linear geometry prograding geomorphic features. This study determines the carbon and mineral accumulation trends in marsh environments at Cape Espenberg for both paleo (pre 1850 after death [AD]) and modern (post 1850 AD) timeframes. A comprehensive physical and chemical dataset, including radioisotope (Caesium-137 [137Cs], Lead-210 [210Pb], Carbon-14 [14C]), stable isotope (delta-13 Carbon [δ13C]), element concentration (%Carbon [C], %Nitrogen [N], C:N), and dry bulk density, has been built for several sediment cores. Results indicate carbon and mineral accumulations have increased from paleo to modern times, potentially due to better growing and/or preservation conditions for organic matter under a modern climate. Paleoclimate trends in the Medieval Climate Anomaly (MCA), and warm periods interspersed within the Little Ice Age (LIA), also correlate to greater contributions of wetland organic matter as evidenced by lighter δ13C values. Cold climate periods within the Little Ice Age correlate with increased aquatic organic matter sourcing and heavier δ13C values with some spikes of wetland sources interspersed throughout the LIA. Modern warming may potentially continue to expand carbon stores in Arctic coastal wetlands as future temperatures are predicted to rise with global climate change, as observed in the swale environments at Cape Espenberg, where increasingly favorable growing and soil preservation conditions (i.e. wet/anoxic soils and lower salinity to limit organic material decay, higher temperatures to promote growth) may result in future Arctic coastal carbon reservoirs.more » « less
-
Abstract The combustion of fossil fuels is currently causing rapid rates of ocean warming and acidification worldwide. Projected changes in these parameters have been repeatedly observed to stress the physiological limits and plasticity of many marine species from the molecular to organismal levels. High latitude oceans are among the fastest changing ecosystems; therefore, polar species are projected to be some of the most vulnerable to climate change. Antarctic species are particularly sensitive to environmental change, having evolved for millions of years under stable ocean conditions. Otoliths, calcified structures found in a fish’s inner ear used to sense movement and direction, have been shown to be affected by both warming and CO 2 -acidified seawater in temperate and tropical fishes but there is no work to date on Antarctic fishes. In this study, juvenile emerald rockcod ( Trematomus bernacchii ) were exposed to projected seawater warming and CO 2 -acidification for the year 2100 over 28 days. Sagittal otoliths were analyzed for changes in area, perimeter, length, width and shape. We found ocean warming increased the growth rate of otoliths, while CO 2 -acidified seawater and the interaction of warming and acidification did not have an effect on otolith development. Elevated temperature also altered the shape of otoliths. If otolith development is altered under future warming scenarios, sensory functions such as hearing, orientation, and movement may potentially be impaired. Changes in these basic somatic abilities could have broad implications for the general capabilities and ecology of early life stages of Antarctic fishes.more » « less
An official website of the United States government
