skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: AI-Enhanced Remote Sensing of Land Transformations for Climate-Related Financial Risk Assessment in Housing Markets: A Review
Amid accelerating climate change, climate-related hazards—such as floods, wildfires, hurricanes, and sea-level rise—increasingly drive land transformations and pose growing risks to housing markets by affecting property valuations, insurance availability, mortgage performance, and broader financial stability. This review synthesizes recent progress in two distinct domains and their linkage: (1) assessing climate-related financial risks in housing markets, and (2) applying AI-driven remote sensing for hazard detection and land transformation monitoring. While both areas have advanced significantly, important limitations remain. Existing housing finance studies often rely on static models and coarse spatial data, lacking integration with real-time environmental information, thereby reducing their predictive power and policy relevance. In parallel, remote sensing studies using AI primarily focus on detecting physical hazards and land surface changes, yet rarely connect these spatial transformations to financial outcomes. To address these gaps, this review proposes an integrative framework that combines AI-enhanced remote sensing technologies with financial econometric modeling to improve the accuracy, timeliness, and policy relevance of climate-related risk assessment in housing markets. By bridging environmental hazard data—including land-based indicators of exposure and damage—with financial indicators, the framework enables more granular, dynamic, and equitable assessments than conventional approaches. Nonetheless, its implementation faces technical and institutional barriers, including spatial and temporal mismatches between datasets, fragmented regulatory and behavioral inputs, and the limitations of current single-task AI models, which often lack transparency. Overcoming these challenges will require innovation in AI modeling, improved data-sharing infrastructures, and stronger cross-disciplinary collaboration.  more » « less
Award ID(s):
2303575
PAR ID:
10654438
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI Land
Date Published:
Journal Name:
Land
Volume:
14
Issue:
8
ISSN:
2073-445X
Page Range / eLocation ID:
1672
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This Review synthesizes progress and outlines a new framework for understanding how land surface hazards interact and propagate as sediment cascades across Earth’s surface, influenced by interactions among the atmosphere, biosphere, hydrosphere, and solid Earth. Recent research highlights a gap in understanding these interactions on human timescales, given rapid climatic change and urban expansion into hazard-prone zones. We review how surface processes such as coseismic landslides and post-fire debris flows form a complex sequence of events that exacerbate hazard susceptibility. Moreover, innovations in modeling, remote sensing, and critical zone science can offer new opportunities for quantifying cascading hazards. Looking forward, societal resilience can increase by transforming our understanding of cascading hazards through advances in integrating data into comprehensive models that link across Earth systems. 
    more » « less
  2. Unoccupied aerial systems (UAS) are an established technique for collecting data on cold region phenomenon at high spatial and temporal resolutions. While many studies have focused on remote sensing applications for monitoring long term changes in cold regions, the role of UAS for detection, monitoring, and response to rapid changes and direct exposures resulting from abrupt hazards in cold regions is in its early days. This review discusses recent applications of UAS remote sensing platforms and sensors, with a focus on observation techniques rather than post-processing approaches, for abrupt, cold region hazards including permafrost collapse and event-based thaw, flooding, snow avalanches, winter storms, erosion, and ice jams. The pilot efforts highlighted in this review demonstrate the potential capacity for UAS remote sensing to complement existing data acquisition techniques for cold region hazards. In many cases, UASs were used alongside other remote sensing techniques (e.g., satellite, airborne, terrestrial) andin situsampling to supplement existing data or to collect additional types of data not included in existing datasets (e.g., thermal, meteorological). While the majority of UAS applications involved creation of digital elevation models or digital surface models using Structure-from-Motion (SfM) photogrammetry, this review describes other applications of UAS observations that help to assess risks, identify impacts, and enhance decision making. As the frequency and intensity of abrupt cold region hazards changes, it will become increasingly important to document and understand these changes to support scientific advances and hazard management. The decreasing cost and increasing accessibility of UAS technologies will create more opportunities to leverage these techniques to address current research gaps. Overcoming challenges related to implementation of new technologies, modifying operational restrictions, bridging gaps between data types and resolutions, and creating data tailored to risk communication and damage assessments will increase the potential for UAS applications to improve the understanding of risks and to reduce those risks associated with abrupt cold region hazards. In the future, cold region applications can benefit from the advances made by these early adopters who have identified exciting new avenues for advancing hazard research via innovative use of both emerging and existing sensors. 
    more » « less
  3. Integrating Artificial Intelligence (AI) techniques with remote sensing holds great potential for revolutionizing data analysis and applications in many domains of Earth sciences. This review paper synthesizes the existing literature on AI applications in remote sensing, consolidating and analyzing AI methodologies, outcomes, and limitations. The primary objectives are to identify research gaps, assess the effectiveness of AI approaches in practice, and highlight emerging trends and challenges. We explore diverse applications of AI in remote sensing, including image classification, land cover mapping, object detection, change detection, hyperspectral and radar data analysis, and data fusion. We present an overview of the remote sensing technologies, methods employed, and relevant use cases. We further explore challenges associated with practical AI in remote sensing, such as data quality and availability, model uncertainty and interpretability, and integration with domain expertise as well as potential solutions, advancements, and future directions. We provide a comprehensive overview for researchers, practitioners, and decision makers, informing future research and applications at the exciting intersection of AI and remote sensing. 
    more » « less
  4. Environmental hazards vary locally and even street to street resulting in microspatial inequities, necessitating climate resilience solutions that respond to specific hyperlocal conditions. This study uses remote sensing data to estimate two environmental hazards that are particularly relevant to community health: land surface temperature (LST; from LandSat) and air pollution (AP; from motor vehicle volume via cell phone records). These data are analyzed in conjunction with land use records in Boston, MA to test (1) the extent to which each hazard concentrates on specific streets within neighborhoods, (2) the infrastructural elements that drive variation in the hazards, and (3) how strongly hazards overlap in space. Though these data rely on proxies, they provide preliminary evidence. Substantial variations in LST and AP existed between streets in the same neighborhood (40% and 70–80% of variance, respectively). The former were driven by canopy, impervious surfaces, and albedo. The latter were associated with main streets and zoning with tall buildings. The correlation between LST and AP was moderate across census tracts (r = 0.4) but modest across streets within census tracts (r = 0.16). The combination of results confirms not only the presence of microspatial inequities for both hazards but also their limited coincidence, indicating that some streets suffer from both hazards, some from neither, and others from only one. There is a need for more precise, temporally-dynamic data tracking environmental hazards (e.g., from environmental sensor networks) and strategies for translating them into community-based solutions. 
    more » « less
  5. This perspective paper highlights the potentials, limitations, and combinations of openly available Earth observation (EO) data and big data in the context of environmental research in urban areas. The aim is to build the resilience of informal settlements to climate change impacts. In particular, it highlights the types, categories, spatial and temporal scales of publicly available big data. The benefits of publicly available big data become clear when looking at issues such as the development and quality of life in informal settlements within and around major African cities. Sub-Saharan African (SSA) cities are among the fastest growing urban areas in the world. However, they lack spatial information to guide urban planning towards climate-adapted cities and fair living conditions for disadvantaged residents who mostly reside in informal settlements. Therefore, this study collected key information on freely available data such as data on land cover, land use, and environmental hazards and pressures, demographic and socio-economic indicators for urban areas. They serve as a vital resource for success of many other related local studies, such as the transdisciplinary research project “DREAMS—Developing REsilient African cities and their urban environMent facing the provision of essential urban SDGs”. In the era of exponential growth of big data analytics, especially geospatial data, their utility in SSA is hampered by the disparate nature of these datasets due to the lack of a comprehensive overview of where and how to access them. This paper aims to provide transparency in this regard as well as a resource to access such datasets. Although the limitations of such big data are also discussed, their usefulness in assessing environmental hazards and human exposure, especially to climate change impacts, are emphasised. 
    more » « less