Abstract The crystal structure and bonding environment of K2Ca(CO3)2bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus,$${K}_{0}=46.9$$ GPa with an imposed value of$${K}_{0}^{\prime}= 4$$ for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along thec-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinicC2/mstructure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields$${V}_{0}=322.2$$ Å3$$,$$ $${K}_{0}=24.8$$ GPa and$${K}_{0}^{\prime}=4.0$$ using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of theC2/mphase involves interlayer displacement and twisting of the [CO3] units, and an increase in coordination number of the K+ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO3] bonding environments within the structure.
more »
« less
X-ray-diffraction and electrical-transport imaging of superconducting superhydride (La,Y)H10
Abstract Understanding how microscopic structural domains govern macroscopic electronic properties is central to advancing hydride superconductors, yet such correlations remain poorly resolved under pressure. We report the synthesis and characterization of (La0.9Y0.1)H10superhydrides exhibiting coexisting cubic$${Fm}\bar{3}m$$ and hexagonal$$P{6}_{3}/{mmc}$$ clathrate phases observed over the pressure range from 168 GPa down to 136 GPa. Using synchrotron-based X-ray diffraction imaging at the upgraded Advanced Photon Source, we spatially resolved μm-scale distributions of these phases, revealing structural inhomogeneity across the sample. Four-probe resistance measurements confirmed superconductivity with two distinct transitions: an onset at 244 K associated with the cubic phase and a second near 220 K linked to the hexagonal phase. Notably, resistance profiles collected from multiple current and voltage permutations showed variations in transition width and onset temperature that correlated with the spatial phase distribution. These findings demonstrate a direct connection between local structural domains and superconducting behavior.
more »
« less
- Award ID(s):
- 2104881
- PAR ID:
- 10654481
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We define the half-volume spectrum$$\{{\tilde{\omega }_p\}_{p\in \mathbb {N}}}$$ of a closed manifold$$(M^{n+1},g)$$ . This is analogous to the usual volume spectrum ofM, except that we restrict top-sweepouts whose slices each enclose half the volume ofM. We prove that the Weyl law continues to hold for the half-volume spectrum. We define an analogous half-volume spectrum$$\tilde{c}(p)$$ in the phase transition setting. Moreover, for$$3 \le n+1 \le 7$$ , we use the Allen–Cahn min-max theory to show that each$$\tilde{c}(p)$$ is achieved by a constant mean curvature surface enclosing half the volume ofMplus a (possibly empty) collection of minimal surfaces with even multiplicities.more » « less
-
Abstract Charge density wave (CDW) ordering has been an important topic of study for a long time owing to its connection with other exotic phases such as superconductivity and magnetism. The$$R{\textrm{Te}}_{3}$$ (R= rare-earth elements) family of materials provides a fertile ground to study the dynamics of CDW in van der Waals layered materials, and the presence of magnetism in these materials allows to explore the interplay among CDW and long range magnetic ordering. Here, we have carried out a high-resolution angle-resolved photoemission spectroscopy (ARPES) study of a CDW material$${\textrm{Gd}}{\textrm{Te}}_{3}$$ , which is antiferromagnetic below$$\sim \mathrm {12~K}$$ , along with thermodynamic, electrical transport, magnetic, and Raman measurements. Our ARPES data show a two-fold symmetric Fermi surface with both gapped and ungapped regions indicative of the partial nesting. The gap is momentum dependent, maximum along$${\overline{\Gamma }}-\mathrm{\overline{Z}}$$ and gradually decreases going towards$${\overline{\Gamma }}-\mathrm{\overline{X}}$$ . Our study provides a platform to study the dynamics of CDW and its interaction with other physical orders in two- and three-dimensions.more » « less
-
Abstract We consider a conjecture that identifies two types of base point free divisors on$$\overline {\text {M}}_{0,n}$$ . The first arises from Gromov-Witten theory of a Grassmannian. The second comes from first Chern classes of vector bundles associated with simple Lie algebras in type A. Here we reduce this conjecture on$$\overline {\text {M}}_{0,n}$$ to the same statement forn= 4. A reinterpretation leads to a proof of the conjecture on$$\overline {\text {M}}_{0,n}$$ for a large class, and we give sufficient conditions for the non-vanishing of these divisors.more » « less
-
A<sc>bstract</sc> Measurements of inclusive and normalized differential cross sections of the associated production of top quark-antiquark and bottom quark-antiquark pairs,$$ \textrm{t}\overline{\textrm{t}}\textrm{b}\overline{\textrm{b}} $$ , are presented. The results are based on data from proton-proton collisions collected by the CMS detector at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb−1. The cross sections are measured in the lepton+jets decay channel of the top quark pair, using events containing exactly one isolated electron or muon and at least five jets. Measurements are made in four fiducial phase space regions, targeting different aspects of the$$ \textrm{t}\overline{\textrm{t}}\textrm{b}\overline{\textrm{b}} $$ process. Distributions are unfolded to the particle level through maximum likelihood fits, and compared with predictions from several event generators. The inclusive cross section measurements of this process in the fiducial phase space regions are the most precise to date. In most cases, the measured inclusive cross sections exceed the predictions with the chosen generator settings. The only exception is when using a particular choice of dynamic renormalization scale,$$ {\mu}_{\textrm{R}}=\frac{1}{2}{\prod}_{i=\textrm{t},\overline{\textrm{t}},\textrm{b},\overline{\textrm{b}}}{m}_{\textrm{T},i}^{1/4} $$ , where$$ {m}_{\textrm{T},i}^2={m}_i^2+{p}_{\textrm{T},i}^2 $$ are the transverse masses of top and bottom quarks. The differential cross sections show varying degrees of compatibility with the theoretical predictions, and none of the tested generators with the chosen settings simultaneously describe all the measured distributions.more » « less
An official website of the United States government
