The College of Engineering, Computer Science, and Technology (ECST) at California State University, Los Angles, an Hispanic Serving Institution (HSI) with over 60% Hispanic students, is committed to improving graduation rates through the Grad initiative 2025 (the California State University’s initiative to increase graduation rates for all CSU students while eliminating achievement gaps). The majority of our students are under-represented minorities, low-income, Pell-eligible and first generation. Currently, one quarter of the students leaving the major before the second year. Many that “survive” the first two years of math and science do not develop the knowledge and the skills that are needed to succeed in upper division engineering courses, leading to more students unable to finish their engineering majors. Three years ago, we launched a pilot program for the First-Year Experience at ECST (FYrE@ECST) for incoming freshmen. The program focuses on providing academic support for math and physics courses while introducing students to the college community, and comprises a summer bridge program, a hands-on introductory course, cohorted math and science sections, and staff and faculty mentoring. Academic support is provided through peer-led supplemental instruction (SI) workshops. The workshops have led to a significant improvement in student performance in Math, but have had no significant impact in the student performance in physics. Our hypothesis is that students, in addition to having limited understanding of calculus, struggle to understand the fundamental principles of physics and thus cannot apply their knowledge of math to theories in physics to solve problems. This work-in-progress paper describes an inquiry-based hands-on pre-physics course for first-year students as part of the FYrE@ECST program. The course is intended to prepare students for the calculus-based mechanics course in physics and covers about half of the competencies of a classical mechanics course, with focuses on the fundamental concepts of mechanics (i.e. Newton’s Laws, Types of forces, vectors, free-body diagrams, position, velocity and acceleration). Equations are only introduced in the second half of the semester, while the first half is directed to help students develop a deep understanding of these fundamental concepts. During classes, students run simple experiments, watch segments of movies and cartoons and are asked questions (written and orally) which can guide them to think intuitively and critically. A think-pair-share mode of instruction is implemented to promote inquiry and discussion. Students work in groups of five to discuss and solve problems, carry out experiments to better understand processes and systems, and share what they learned with the whole class. The paper presents preliminary results on student achievement.
more »
« less
This content will become publicly available on October 28, 2026
One student's resources throughout a triple integral question
Students in physics courses are often asked to compute integrals that are both similar and different compared to the integrals from Calculus courses. We interviewed three students at a mid-sized midwestern university, and asked them to work on integral problems from math and physics contexts and talk through their thinking. We identified five conceptual resources that students activated throughout and across the interviews. Here, we highlight two of the five resources through an example of a student reasoning through a volume integral problem, and their thought process as they attempt to connect different conceptions of integration. We argue that this case study excerpt is representative of some of the hurdles that certain conceptions of integrals may lead to when solving different integral problems in physics despite students’ prior success in math courses.
more »
« less
- Award ID(s):
- 1912152
- PAR ID:
- 10654696
- Publisher / Repository:
- https://www.per-central.org/items/PERC.cfm?Y=2025#PeerReviewed
- Date Published:
- Page Range / eLocation ID:
- 252 to 257
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
[This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] We discuss an investigation of student sensemaking and reasoning in the context of degenerate perturbation theory (DPT) in quantum mechanics. We find that advanced undergraduate and graduate students in quantum physics courses often struggled with expertlike sensemaking and reasoning to solve DPT problems. The sensemaking and reasoning were particularly challenging for students as they tried to integrate physical and mathematical concepts to solve DPT problems. Their sensemaking showed local coherence but lacked global consistency with different knowledge resources getting activated in different problem-solving tasks even if the same concepts were applicable. Depending upon the issues involved in the DPT problems, students were sometimes stuck in the “physics mode” or “math mode” and found it challenging to coordinate and integrate the physics and mathematics appropriately to solve quantum mechanics problems involving DPT. Their sensemaking shows the use of various reasoning primitives. It also shows that some advanced students struggled with self-monitoring and checking their answers to make sure they were consistent across different problems. Some also relied on memorized information, invoked authority, and did not make appropriate connections between their DPT problem solutions and the outcomes of experiments. Advanced students in quantum mechanics often displayed analogous patterns of challenges in sensemaking and reasoning as those that have been found in introductory physics. Student sensemaking and reasoning show that these advanced students are still developing expertise in this novel quantum physics domain as they learn to integrate physical and mathematical concepts. Published by the American Physical Society2024more » « less
-
This is a research study that investigates the range of conceptions of prototyping in engineering design courses through exploring the conceptions and implementations from the instructors’ perspective. Prototyping is certainly an activity central to engineering design. The context of prototyping to support engineering education and practice has a range of implementations in an undergraduate engineering curriculum, from first-year engineering to capstone engineering design experiences. Understanding faculty conceptions’ of the reason, purpose, and place of prototyping can help illustrate how teaching and learning of the engineering design process is realistically implemented across a curriculum and how students are prepared for work practice. We seek to understand, and consequently improve, engineering design teaching and learning, through transformations of practice that are based on engineering education research. In this exploratory study, we interviewed three faculty members who teach engineering design in project-based learning courses across the curriculum of an undergraduate engineering program. This builds on related work done by the authors that previously investigated undergraduate engineering students’ conceptions of prototyping activities and process. With our instructor participants, a similar interview protocol was followed through semi-structured qualitative interviews. Data analysis has been undertaken through an emerging thematic analysis of these interview transcripts. Early findings characterize the focus on teaching the design process; the kind of feedback that the educators provide on students’ prototypes; students’ behavior while working on design projects; and educators’ perspectives on the design course. Understanding faculty conceptions with students’ conceptions of prototyping can shed light on the efficacy of using prototyping as an authentic experience in design teaching and learning. In project-based learning courses, particular issues of authenticity and assessment are under consideration, especially across the curriculum. More specifically, “proportions of problems” inform “problem solving” as one of the key characteristics in design thinking, teaching and learning. More attention to prototyping as part of the study of problem-solving processes can be useful to enhance understanding of the impact of instructional design. Challenges for teaching engineering design exist, and may be due to difficulties in framing design problems, recognizing what expertise students possess, and assessing their expertise to help them reach their goals, all at an appropriate place and ambiguity with student learning goals. Initial findings show that prototyping activities can help students become more reflective on their design. Scaffolded activities in prototyping can support self-regulated learning by students. The range of support and facilities, such as campus makerspaces, may also help students and instructors alike develop industry-ready engineering students.more » « less
-
Problem-solving is a critical skill in the workplace, but recent college graduates are often deficient in problem-solving skills. Introductory STEM courses present engineering students with well-structured problems with single-path solutions that do not prepare students with the problem-solving skills they will need to solve complex problems within authentic engineering contexts. When presented with complex problems in authentic contexts, engineering students find it difficult to transfer the scientific knowledge learned in their STEM courses to solve these integrated and ill structured problems. By integrating physics laboratories with engineering design problems, students are taught to apply physics principles to solve ill-structured and complex engineering problems. The integration of engineering design processes to physics labs is meant to help students transfer physics learning to engineering problems, as well as to transfer the design skills learned in their engineering courses to the physics lab. We hypothesize this integration will help students become better problem solvers when they go out to industry after graduation. The purpose of this study is to examine how students transfer their understanding of physics concepts to solve ill-structured engineering problems by means of an engineering design project in a physics laboratory. We use a case-study methodology to examine two cases and analyze the cases using a lens of co-regulated learning and transfer between physics and engineering contexts. Observations were conducted using transfer lenses. That is, we observed groups during the physics labs for evidence of transfer. The research question for this study was, to what extent do students relate physics concepts with concepts from other materials (classes) through an engineering design project incorporated in a physics laboratory? Teams were observed over the course of 6 weeks as they completed the second design challenge. The cases presented in this study were selected using observations from the lab instructors of the team’s work in the first design project. Two teams, one who performed well, and one that performed poorly, were selected to be observed to provide insight on how students use physics concepts to engage in the design process. The second design challenge asked students to design an eco-friendly way of delivering packages of food to an island located in the middle of the river, which is home to critically endangered species. They are given constraints that the solution cannot disrupt the habitat in any way, nor can the animals come into contact directly with humans or loud noises. Preliminary results indicate that both teams successfully demonstrated transfer between physics and engineering contexts, and integrated physics concepts from multiple labs to complete the design project. Teams that struggle seem to be less connected with the design process at the beginning of the project and are less organized. In contrast, teams that are successful demonstrate greater co-regulated learning (communication, reflection, etc.) and focus on making connections between the physics concepts and principles of engineering design from their engineering course work.more » « less
-
It is well-established that students have difficulty transferring theory and skills between courses in their undergraduate curriculum. At the same time, many college-level courses only concern material relating to the course itself and do not cover how this material might be used elsewhere. It is unsurprising, then, that students are unable to transfer and integrate knowledge from multiple areas into new problems as part of capstone design courses, for example, or in their careers. More work is required to better enable students to transfer knowledge between their courses, learn skills and theory more deeply, and to form engineers who are better able to adapt to new situations and solve “systems-level” problems. Various authors in both the cognitive and disciplinary sciences have discussed these difficulties with the transfer of knowledge, and noted the need to develop tools and techniques for promoting knowledge transfer, as well as to help students develop cross-course connections. This work aimed to address these barriers to knowledge transfer, and crucially develop the needed activities and practices for promoting transfer by answering the following research questions: (1) What are the primary challenges experienced by students when tasked with transferring theory and skills from prior courses, specifically mathematics and physics? (2) What methods of prior knowledge activation are most effective in enabling students to apply this prior knowledge in new areas of study? In this paper we present a holistic summary of the work completed under this award. Initially, findings from a series of n=23 think aloud interviews, in which participants were asked to solve a typical engineering statics problem, is presented. These interviews evidenced multiple barriers to knowledge transfer (lack of prior knowledge, accuracy of prior knowledge, conceptual understanding, lack of teaching of applications, language of problem, curricular mapping) that hindered participant success in terms of using their mathematical skills to solve the problem. Findings also indicated the importance of reflective thinking on behalf of the participants to their problem solving success. Based on this initial work using think alouds, a further set of interviews (n=8) were conducted to more deeply examine student conceptions of important mathematical topics that are transferred into engineering such as integration and centroids. Findings indicated that participant knowledge and understanding of centroids in particular was generally based around more intuitive or geometrical conceptions rather than concrete physical or mathematical models. Following up on the initial study of problem solving, the importance of reflection on behalf of the problem solver was also examined in more detail. Comparison of expert (faculty) and novice (student) approaches to problem solving demonstrates how often experts reflect on their progress during the solving process and the manner in which they are able to connect problems in one context to similar problems they have encountered in the past in other areas of engineering. The ability of experts to “chunk” problems into smaller stages and reflect on individual elements of the problem at hand rather than the problem as a whole was also seen to be a differentiating factor in their approach as compared to novices. Similar to this paper, the associated poster presentation will cover a holistic representation of the findings of this study.more » « less
An official website of the United States government
