Abstract In addition to measuring forecast accuracy in terms of errors in a tropical system’s forecast track and other meteorological characteristics, it is important to measure the impact of those errors on society. With this in mind, the authors designed a coupled natural–human modeling framework with high-level representations of the natural hazard (hurricane), the human system (information flow, evacuation decisions), the built environment (road infrastructure), and connections between elements (forecasts and warning information, traffic). Using the model, this article begins exploring how tropical cyclone forecast errors impact evacuations and, in doing so, builds toward the development of new verification approaches. Specifically, the authors implement track errors representative of 2007 and 2022, and create situations with unexpected rapid intensification and/or rapid onset, and evaluate their impact on evacuations across real and hypothetical forecast scenarios (e.g., Hurricane Irma, Hurricane Dorian making landfall across east Florida). The results provide first-order evidence that 1) reduced forecast track errors across the 2007–22 period translate to improvements in evacuation outcomes across these cases and 2) unexpected rapid intensification and/or rapid onset scenarios can reduce evacuation rates, and increase traffic, across the most impacted areas. In exploring these relationships, the results demonstrate how experiments with coupled natural–human models can offer a societally relevant complement to traditional metrics of forecast accuracy. In doing so, this work points toward further development of natural–human models and associated methodologies to address these types of questions and improve forecast verification across the weather enterprise.
more »
« less
This content will become publicly available on October 1, 2026
FLEE 2.0: An Improved Agent-Based Model of Hurricane Evacuations
Abstract For this study, we present and evaluate an improved agent-based modeling framework, the Forecasting Laboratory for Exploring the Evacuation-system, version 2.0 (FLEE 2.0), designed to investigate relationships between hurricane forecast uncertainty and evacuation outcomes. Presented improvements include doubling its spatial resolution, using a quantitative approach to map real-world data onto the model’s virtual world, and increasing the number of possible risk magnitudes for wind, surge, and rain risk. To assess model realism, we compare FLEE 2.0’s simulated evacuations—specifically its evacuation orders, evacuation rates, and traffic—to available observational data collected during Hurricanes Irma, Dorian, and Ian. FLEE 2.0’s evacuation response is encouraging, given that FLEE 2.0 responds reasonably and differently to all three different types of forecast scenarios. FLEE 2.0 well represents the spatial distribution of observed evacuation rates, and relative to a lower spatial resolution version of the model, FLEE 2.0 better captures sharp gradients in evacuation behaviors across the coastlines and metropolitan areas. Quantitatively evaluating FLEE 2.0’s evacuation rates during Irma establishes model errors, uncertainties, and opportunities for improvement. In summary, this paper increases our confidence in FLEE 2.0, develops a framework for evaluating and improving these types of models, and sets the stage for additional analyses to quantify the impacts of forecast track, intensity, and other positional errors on evacuation. Significance StatementThis paper describes and evaluates an updated version of a modeling system [the Forecasting Laboratory for Exploring the Evacuation-system, version 2.0 (FLEE 2.0)] designed to explore relationships between hurricane forecasts and evacuation impacts. FLEE 2.0’s simulated evacuations compare favorably with different types of observational evacuation data collected during Hurricanes Irma, Dorian, and Ian. A statistical comparison with Irma’s observed evacuation rates highlights uncertainties and opportunities for improvement in FLEE 2.0. In summary, this paper increases our confidence in FLEE 2.0, develops a framework for evaluating these types of models, and provides a foundation for additional work using FLEE 2.0 as a research tool.
more »
« less
- Award ID(s):
- 2100837
- PAR ID:
- 10654697
- Publisher / Repository:
- American Meteorology Society
- Date Published:
- Journal Name:
- Weather, Climate, and Society
- Volume:
- 17
- Issue:
- 4
- ISSN:
- 1948-8327
- Page Range / eLocation ID:
- 729 to 744
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In addition to measuring forecast accuracy in terms of errors in a tropical system’s forecast track and other meteorological characteristics, it is important to measure the impact of those errors on society. With this in mind, the authors designed a coupled natural–human modeling framework with high-level representations of the natural hazard (hurricane), the human system (information flow, evacuation decisions), the built environment (road infrastructure), and connec- tions between elements (forecasts and warning information, traffic). Using the model, this article begins exploring how tropical cyclone forecast errors impact evacuations and, in doing so, builds toward the development of new verification approaches. Specifically, the authors implement track errors representative of 2007 and 2022, and create situations with unexpected rapid intensifica- tion and/or rapid onset, and evaluate their impact on evacuations across real and hypothetical forecast scenarios (e.g., Hurricane Irma, Hurricane Dorian making landfall across east Florida). The results provide first-order evidence that 1) reduced forecast track errors across the 2007–22 period translate to improvements in evacuation outcomes across these cases and 2) unexpected rapid intensification and/or rapid onset scenarios can reduce evacuation rates, and increase traffic, across the most impacted areas. In exploring these relationships, the results demonstrate how experiments with coupled natural–human models can offer a societally relevant complement to traditional metrics of forecast accuracy. In doing so, this work points toward further development of natural–human models and associated methodologies to address these types of questions and improve forecast verification across the weather enterprise.more » « less
-
Hurricanes cause devastating amounts of damage to structures and infrastructure. It harms especially those coastal residents along its track. Over the last couple of years, evacuation planning for populated coastal regions has been challenging and time-consuming due to the uncertainty of the hurricane’s track. As such, with a focus on Northwest Florida, this research aims to focus on the development of evacuation scenarios for coastal communities that combines hurricane inundation and strong wind forecast and evacuation modeling. The proposed approach integrates storm surge simulation models (ADCIRC and SWAN modeling) and traffic evacuation models (Cube and TIME) by using hurricane forecasting datasets to explore the designation of evacuation zones and the calculation of evacuation clearance times in different counties. This approach was applied to three distinct scenarios with a focus on possible populated coastal cities that Hurricane Michael would have hit in 2018. Selected cities are Pensacola, Destin, and Panama City. This type of approach has the potential to help agencies make more informed decisions on evacuations using the accuracy and timeliness of forecasts and provide safer evacuations in coastal areas by avoiding the traffic jams on evacuation routes.more » « less
-
Evacuations have a significant impact on saving human lives during hurricanes. However, as a complex dynamic process, it is typically difficult to know individual evacuation decisions in real-time. Since a large amount of information is continuously posted through social media platforms, we can use them to understand individual evacuation behavior. In this paper, we collect tweets during Hurricane Irma in 2017 and train a text classifier in an active learning way to distinguish tweets expressing positive evacuation decisions from both negative and irrelevant ones. Additionally, we perform a demographic analysis and content clustering to investigate the potential causes and correlates of evacuation decisions. The results can be used to help inform planning strategies of emergency response agencies.more » « less
-
Evacuations have a significant impact on saving human lives during hurricanes. However, as a complex dynamic process, it is typically difficult to know individual evacuation decisions in real-time. Since a large amount of information is continuously posted through social media platforms, we can use them to understand individual evacuation behavior. In this paper, we collect tweets during Hurricane Irma in 2017 and train a text classifier in an active learning way to distinguish tweets expressing positive evacuation decisions from both negative and irrelevant ones. Additionally, we perform a demographic analysis and content clustering to investigate the potential causes and correlates of evacuation decisions. The results can be used to help inform planning strategies of emergency response agencies.more » « less
An official website of the United States government
