skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Verification Approach? Using Coupled Natural–Human Models to Evaluate the Impact of Forecast Errors on Evacuations
Abstract In addition to measuring forecast accuracy in terms of errors in a tropical system’s forecast track and other meteorological characteristics, it is important to measure the impact of those errors on society. With this in mind, the authors designed a coupled natural–human modeling framework with high-level representations of the natural hazard (hurricane), the human system (information flow, evacuation decisions), the built environment (road infrastructure), and connections between elements (forecasts and warning information, traffic). Using the model, this article begins exploring how tropical cyclone forecast errors impact evacuations and, in doing so, builds toward the development of new verification approaches. Specifically, the authors implement track errors representative of 2007 and 2022, and create situations with unexpected rapid intensification and/or rapid onset, and evaluate their impact on evacuations across real and hypothetical forecast scenarios (e.g., Hurricane Irma, Hurricane Dorian making landfall across east Florida). The results provide first-order evidence that 1) reduced forecast track errors across the 2007–22 period translate to improvements in evacuation outcomes across these cases and 2) unexpected rapid intensification and/or rapid onset scenarios can reduce evacuation rates, and increase traffic, across the most impacted areas. In exploring these relationships, the results demonstrate how experiments with coupled natural–human models can offer a societally relevant complement to traditional metrics of forecast accuracy. In doing so, this work points toward further development of natural–human models and associated methodologies to address these types of questions and improve forecast verification across the weather enterprise.  more » « less
Award ID(s):
2100837
PAR ID:
10439521
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
Volume:
104
Issue:
6
ISSN:
0003-0007
Page Range / eLocation ID:
E1166 to E1178
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In addition to measuring forecast accuracy in terms of errors in a tropical system’s forecast track and other meteorological characteristics, it is important to measure the impact of those errors on society. With this in mind, the authors designed a coupled natural–human modeling framework with high-level representations of the natural hazard (hurricane), the human system (information flow, evacuation decisions), the built environment (road infrastructure), and connec- tions between elements (forecasts and warning information, traffic). Using the model, this article begins exploring how tropical cyclone forecast errors impact evacuations and, in doing so, builds toward the development of new verification approaches. Specifically, the authors implement track errors representative of 2007 and 2022, and create situations with unexpected rapid intensifica- tion and/or rapid onset, and evaluate their impact on evacuations across real and hypothetical forecast scenarios (e.g., Hurricane Irma, Hurricane Dorian making landfall across east Florida). The results provide first-order evidence that 1) reduced forecast track errors across the 2007–22 period translate to improvements in evacuation outcomes across these cases and 2) unexpected rapid intensification and/or rapid onset scenarios can reduce evacuation rates, and increase traffic, across the most impacted areas. In exploring these relationships, the results demonstrate how experiments with coupled natural–human models can offer a societally relevant complement to traditional metrics of forecast accuracy. In doing so, this work points toward further development of natural–human models and associated methodologies to address these types of questions and improve forecast verification across the weather enterprise. 
    more » « less
  2. Abstract For this study, we present and evaluate an improved agent-based modeling framework, the Forecasting Laboratory for Exploring the Evacuation-system, version 2.0 (FLEE 2.0), designed to investigate relationships between hurricane forecast uncertainty and evacuation outcomes. Presented improvements include doubling its spatial resolution, using a quantitative approach to map real-world data onto the model’s virtual world, and increasing the number of possible risk magnitudes for wind, surge, and rain risk. To assess model realism, we compare FLEE 2.0’s simulated evacuations—specifically its evacuation orders, evacuation rates, and traffic—to available observational data collected during Hurricanes Irma, Dorian, and Ian. FLEE 2.0’s evacuation response is encouraging, given that FLEE 2.0 responds reasonably and differently to all three different types of forecast scenarios. FLEE 2.0 well represents the spatial distribution of observed evacuation rates, and relative to a lower spatial resolution version of the model, FLEE 2.0 better captures sharp gradients in evacuation behaviors across the coastlines and metropolitan areas. Quantitatively evaluating FLEE 2.0’s evacuation rates during Irma establishes model errors, uncertainties, and opportunities for improvement. In summary, this paper increases our confidence in FLEE 2.0, develops a framework for evaluating and improving these types of models, and sets the stage for additional analyses to quantify the impacts of forecast track, intensity, and other positional errors on evacuation. Significance StatementThis paper describes and evaluates an updated version of a modeling system [the Forecasting Laboratory for Exploring the Evacuation-system, version 2.0 (FLEE 2.0)] designed to explore relationships between hurricane forecasts and evacuation impacts. FLEE 2.0’s simulated evacuations compare favorably with different types of observational evacuation data collected during Hurricanes Irma, Dorian, and Ian. A statistical comparison with Irma’s observed evacuation rates highlights uncertainties and opportunities for improvement in FLEE 2.0. In summary, this paper increases our confidence in FLEE 2.0, develops a framework for evaluating these types of models, and provides a foundation for additional work using FLEE 2.0 as a research tool. 
    more » « less
  3. Hurricanes cause devastating amounts of damage to structures and infrastructure. It harms especially those coastal residents along its track. Over the last couple of years, evacuation planning for populated coastal regions has been challenging and time-consuming due to the uncertainty of the hurricane’s track. As such, with a focus on Northwest Florida, this research aims to focus on the development of evacuation scenarios for coastal communities that combines hurricane inundation and strong wind forecast and evacuation modeling. The proposed approach integrates storm surge simulation models (ADCIRC and SWAN modeling) and traffic evacuation models (Cube and TIME) by using hurricane forecasting datasets to explore the designation of evacuation zones and the calculation of evacuation clearance times in different counties. This approach was applied to three distinct scenarios with a focus on possible populated coastal cities that Hurricane Michael would have hit in 2018. Selected cities are Pensacola, Destin, and Panama City. This type of approach has the potential to help agencies make more informed decisions on evacuations using the accuracy and timeliness of forecasts and provide safer evacuations in coastal areas by avoiding the traffic jams on evacuation routes. 
    more » « less
  4. Abstract Ensemble‐based data assimilation of radar observations across inner‐core regions of tropical cyclones (TCs) in tandem with satellite all‐sky infrared (IR) radiances across the TC domain improves TC track and intensity forecasts. This study further investigates potential enhancements in TC track, intensity, and rainfall forecasts via assimilation of all‐sky microwave (MW) radiances using Hurricane Harvey (2017) as an example. Assimilating Global Precipitation Measurement constellation all‐sky MW radiances in addition to GOES‐16 all‐sky IR radiances reduces the forecast errors in the TC track, rapid intensification (RI), and peak intensity compared to assimilating all‐sky IR radiances alone, including a 24‐hr increase in forecast lead‐time for RI. Assimilating all‐sky MW radiances also improves Harvey's hydrometeor fields, which leads to improved forecasts of rainfall after Harvey's landfall. This study indicates that avenues exist for producing more accurate forecasts for TCs using available yet underutilized data, leading to better warnings of and preparedness for TC‐associated hazards in the future. 
    more » « less
  5. Abstract An integrated storm surge modeling and traffic analysis were conducted in this study to assess the effectiveness of hurricane evacuations through a case study of Hurricane Irma. The Category 5 hurricane in 2017 caused a record evacuation with an estimated 6.8 million people relocating statewide in Florida. The Advanced Circulation (ADCIRC) model was applied to simulate storm tides during the hurricane event. Model validations indicated that simulated pressures, winds, and storm surge compared well with observations. Model simulated storm tides and winds were used to estimate the area affected by Hurricane Irma. Results showed that the storm surge and strong wind mainly affected coastal counties in south-west Florida. Only moderate storm tides (maximum about 2.5 m) and maximum wind speed about 115 mph were shown in both model simulations and Federal Emergency Management Agency (FEMA) post-hurricane assessment near the area of hurricane landfall. Storm surges did not rise to the 100-year flood elevation level. The maximum wind was much below the design wind speed of 150–170 mph (Category 5) as defined in Florida Building Code (FBC) for south Florida coastal areas. Compared with the total population of about 2.25 million in the six coastal counties affected by storm surge and Category 1–3 wind, the statewide evacuation of approximately 6.8 million people was found to be an over-evacuation due mainly to the uncertainty of hurricane path, which shifted from south-east to south-west Florida. The uncertainty of hurricane tracks made it difficult to predict the appropriate storm surge inundation zone for evacuation. Traffic data were used to analyze the evacuation traffic patterns. In south-east Florida, evacuation traffic started 4 days before the hurricane’s arrival. However, the hurricane path shifted and eventually landed in south-west Florida, which caused a high level of evacuation traffic in south-west Florida. Over-evacuation caused Evacuation Traffic Index ( ETI ) to increase to 200% above normal conditions in some sections of highways, which reduced the effectiveness of evacuation. Results from this study show that evacuation efficiency can be improved in the future by more accurate hurricane forecasting, better public awareness of real-time storm surge and wind as well as integrated storm surge and evacuation modeling for quick response to the uncertainty of hurricane forecasting. 
    more » « less