skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 28, 2026

Title: History-Independent Dynamic Partitioning: Operation-Order Privacy in Ordered Data Structures
A data structure is history independent if its internal representation reveals nothing about the history of operations beyond what can be determined from the current contents of the data structure. History independence is typically viewed as a security or privacy guarantee, with the intent being to minimize risks incurred by a security breach or audit. Despite widespread advances in history independence, there is an important data-structural primitive that previous work has been unable to replace with an equivalent history-independent alternative—dynamic partitioning. In dynamic partitioning, we are given a dynamic set S of ordered elements and a size-parameter B, and the objective is to maintain a partition of S into ordered groups, each of size θ(B). Dynamic partitioning is important throughout computer science, with applications to B-tree rebalancing, write-optimized dictionaries, log-structured merge trees, other external-memory indexes, geometric and spatial data structures, cache-oblivious data structures, and order-maintenance data structures. The lack of a historyindependent dynamic-partitioning primitive has meant that designers of history-independent data structures have had to resort to complex alternatives. In this paper, we achieve history-independent dynamic partitioning. Our algorithm runs asymptotically optimally against an oblivious adversary, processing each insert/delete with O(1) operations in expectation and O(B logN/ loglogN) with high probability in set size N.  more » « less
Award ID(s):
2247577 2106827
PAR ID:
10654894
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM SIGMOD Record
Volume:
54
Issue:
1
ISSN:
0163-5808
Page Range / eLocation ID:
17 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A data structure is history independent if its internal representation reveals nothing about the history of operations beyond what can be determined from the current contents of the data structure. History independence is typically viewed as a security or privacy guarantee, with the intent being to minimize risks incurred by a security breach or audit. Despite widespread advances in history independence, there is an important data-structural primitive that previous work has been unable to replace with an equivalent history-independent alternative---dynamic partitioning. In dynamic partitioning, we are given a dynamic set S of ordered elements and a size-parameter B, and the objective is to maintain a partition of S into ordered groups, each of size Θ(B). Dynamic partitioning is important throughout computer science, with applications to B-tree rebalancing, write-optimized dictionaries, log-structured merge trees, other external-memory indexes, geometric and spatial data structures, cache-oblivious data structures, and order-maintenance data structures. The lack of a history-independent dynamic-partitioning primitive has meant that designers of history-independent data structures have had to resort to complex alternatives. In this paper, we achieve history-independent dynamic partitioning. Our algorithm runs asymptotically optimally against an oblivious adversary, processing each insert/delete with O(1) operations in expectation and O(B log N/loglog N) with high probability in set size N. 
    more » « less
  2. In-memory data management systems, such as key-value stores, have become an essential infrastructure in today's big-data processing and cloud computing. They rely on efficient index structures to access data. While unordered indexes, such as hash tables, can perform point search with O(1) time, they cannot be used in many scenarios where range queries must be supported. Many ordered indexes, such as B+ tree and skip list, have a O(log N) lookup cost, where N is number of keys in an index. For an ordered index hosting billions of keys, it may take more than 30 key-comparisons in a lookup, which is an order of magnitude more expensive than that on a hash table. With availability of large memory and fast network in today's data centers, this O(log N) time is taking a heavy toll on applications that rely on ordered indexes. In this paper we introduce a new ordered index structure, named Wormhole, that takes O(log L) worst-case time for looking up a key with a length of L. The low cost is achieved by simultaneously leveraging strengths of three indexing structures, namely hash table, prefix tree, and B+ tree, to orchestrate a single fast ordered index. Wormhole's range operations can be performed by a linear scan of a list after an initial lookup. This improvement of access efficiency does not come at a price of compromised space efficiency. Instead, Wormhole's index space is comparable to those of B+ tree and skip list. Experiment results show that Wormhole outperforms skip list, B+ tree, ART, and Masstree by up to 8.4x, 4.9x, 4.3x, and 6.6x in terms of key lookup throughput, respectively. 
    more » « less
  3. The skip list is an elegant dictionary data structure that is com- monly deployed in RAM. A skip list with N elements supports searches, inserts, and deletes in O(logN) operations with high probability (w.h.p.) and range queries returning K elements in O(log N + K) operations w.h.p. A seemingly natural way to generalize the skip list to external memory with block size B is to “promote” with probability 1/B, rather than 1/2. However, there are practical and theoretical obsta- cles to getting the skip list to retain its efficient performance, space bounds, and high-probability guarantees. We give an external-memory skip list that achieves write- optimized bounds. That is, for 0 < ε < 1, range queries take O(logBε N + K/B) I/Os w.h.p. and insertions and deletions take O((logBε N)/B1−ε) amortized I/Os w.h.p. Our write-optimized skip list inherits the virtue of simplicity from RAM skip lists. Moreover, it matches or beats the asymptotic bounds of prior write-optimized data structures such as Bε trees or LSM trees. These data structures are deployed in high-performance databases and file systems. 
    more » « less
  4. Hash tables are a ubiquitous class of dictionary data structures. However, standard hash table implementations do not translate well into the external memory model, because they do not incorporate locality for insertions. Iacono and Pătraşu established an update/query tradeoff curve for external-hash tables: a hash table that performs insertions in O(λ/B) amortized IOs requires Ω(logλ N) expected IOs for queries, where N is the number of items that can be stored in the data structure, B is the size of a memory transfer, M is the size of memory, and λ is a tuning parameter. They provide a complicated hashing data structure, which we call the IP hash table, that meets this curve for λ that is Ω(loglogM +logM N). In this paper, we present a simpler external-memory hash table, the Bundle of Arrays Hash Table (BOA), that is optimal for a narrower range of λ. The simplicity of BOAs allows them to be readily modified to achieve the following results: A new external-memory data structure, the Bundle of Trees Hash Table (BOT), that matches the performance of the IP hash table, while retaining some of the simplicity of the BOAs. The Cache-Oblivious Bundle of Trees Hash Table (COBOT), the first cache-oblivious hash table. This data structure matches the optimality of BOTs and IP hash tables over the same range of λ. 
    more » « less
  5. We prove a new generalization of the higher-order Cheeger inequality for partitioning with buffers. Consider a graph G = (V, E). The buffered expansion of a set S ⊆ V with a buffer B ⊆ V∖S is the edge expansion of S after removing all the edges from set S to its buffer B. An ε-buffered k-partitioning is a partitioning of a graph into disjoint components P_i and buffers B_i, in which the size of buffer B_i for P_i is small relative to the size of P_i: |B_i| ≤ ε|P_i|. The buffered expansion of a buffered partition is the maximum of buffered expansions of the k sets P_i with buffers B_i. Let h^{k,ε}_G be the buffered expansion of the optimal ε-buffered k-partitioning, then for every δ>0, h^{k,ε}_G ≤ O(1)⋅(log k) ⋅λ_{⌊(1+δ)k⌋} / ε, where λ_{⌊(1+δ)k⌋} is the ⌊(1+δ)k⌋-th smallest eigenvalue of the normalized Laplacian of G. Our inequality is constructive and avoids the ``square-root loss'' that is present in the standard Cheeger inequalities (even for k=2). We also provide a complementary lower bound, and a novel generalization to the setting with arbitrary vertex weights and edge costs. Moreover our result implies and generalizes the standard higher-order Cheeger inequalities and another recent Cheeger-type inequality by Kwok, Lau, and Lee (2017) involving robust vertex expansion. 
    more » « less