skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Evaporation and focus degradation mitigation in in-incubator live cell imaging for capacitance lab-on-CMOS microsystem calibration
Lab-on-CMOS is an instrumentation technology that combines miniaturized bioanalytical hardware with complementary metal-oxide semiconductor (CMOS) electronics to provide integrated biosensing in a compact format. This paper focuses on a class of lab-on-CMOS systems that utilize capacitance sensing as a means to monitor cell cultures and track cell proliferation, as well as other cell life-cycle events. In this paradigm, changes in interfacial capacitance result from the activity of adherent cells at a bioelectronic interface. These changes are mapped to cell proliferation or life-cycle events using ground-truth measurements such as live cell imaging from real-time microscopy. This paper identifies instrumentation challenges that arise from conducting these ground-truth measurements in a calibrated cell culture environment, i.e., when the lab-on-CMOS system is deployed inside a CO2 cell culture incubator. In particular, we provide a detailed study of evaporation and focus degradation mitigation techniques for application in-incubator live cell imaging during lab-on-CMOS capacitance sensor calibration tasks. We show that autofocusing the microscopy column and provisioning the lab-on-CMOS with an immersion lid are two approaches that significantly improve the quality of live cell imaging ground-truth measurements over long periods.  more » « less
Award ID(s):
2442346
PAR ID:
10655024
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
96
Issue:
9
ISSN:
0034-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many clinical procedures and biomedical research workflows rely on microscopy, including diagnosis of cancer, genetic disorders, autoimmune diseases, infections, and quantification of cell culture. Despite its widespread use, traditional image acquisition and review by trained microscopists is often lengthy and expensive, limited to large hospitals or laboratories, precluding use in point‐of‐care settings. In contrast, lensless or lensfree holographic microscopy (LHM) is inexpensive and widely deployable because it can achieve performance comparable to expensive and bulky objective‐based benchtop microscopes while relying on components that cost only a few hundred dollars or less. Lab‐on‐a‐chip integration is practical and enables LHM to be combined with single‐cell isolation, sample mixing, and in‐incubator imaging. Additionally, many manual tasks in conventional microscopy are instead computational in LHM, including image focusing, stitching, and classification. Furthermore, LHM offers a field of view hundreds of times greater than that of conventional microscopy without sacrificing resolution. Here, the basic LHM principles are summarized, as well as recent advances in artificial intelligence integration and enhanced resolution. How LHM is applied to the above clinical and biomedical applications is discussed in detail. Finally, emerging clinical applications, high‐impact areas for future research, and some current challenges facing widespread adoption are identified. 
    more » « less
  2. ABSTRACT Regulation of cell cycle progression is essential for cell proliferation during regeneration following injury. After appendage amputation, the axolotl (Ambystoma mexicanum) regenerates missing structures through an accumulation of proliferating cells known as the blastema. To study cell division during blastema growth, we generated a transgenic line of axolotls that ubiquitously expresses a bicistronic version of the fluorescent ubiquitination-based cell-cycle indicator (FUCCI). We demonstrate near-ubiquitous FUCCI expression in developing and adult tissues, and validate these expression patterns with DNA synthesis and mitosis phase markers. We demonstrate the utility of FUCCI for live and whole-mount imaging, showing the predominantly local contribution of cells during limb and tail regeneration. We also show that spinal cord amputation results in increased proliferation at least 5 mm from the site of injury. Finally, we use multimodal staining to provide cell type information for cycling cells by combining fluorescence in situ hybridization, EdU click-chemistry and immunohistochemistry on a single FUCCI tissue section. This new line of animals will be useful for studying cell cycle dynamics using in situ endpoint assays and in vivo imaging in developing and regenerating animals. 
    more » « less
  3. In this paper, we review spatial light interference microscopy (SLIM), a common-path, phase-shifting interferometer, built onto a phase-contrast microscope, with white-light illumination. As one of the most sensitive quantitative phase imaging (QPI) methods, SLIM allows for speckle-free phase reconstruction with sub-nanometer path-length stability. We first review image formation in QPI, scattering, and full-field methods. Then, we outline SLIM imaging from theory and instrumentation to diffraction tomography. Zernike’s phase-contrast microscopy, phase retrieval in SLIM, and halo removal algorithms are discussed. Next, we discuss the requirements for operation, with a focus on software developed in-house for SLIM that enables high-throughput acquisition, whole slide scanning, mosaic tile registration, and imaging with a color camera. We introduce two methods for solving the inverse problem using SLIM, white-light tomography, and Wolf phase tomography. Lastly, we review the applications of SLIM in basic science and clinical studies. SLIM can study cell dynamics, cell growth and proliferation, cell migration, mass transport, etc. In clinical settings, SLIM can assist with cancer studies, reproductive technology, blood testing, etc. Finally, we review an emerging trend, where SLIM imaging in conjunction with artificial intelligence brings computational specificity and, in turn, offers new solutions to outstanding challenges in cell biology and pathology. 
    more » « less
  4. Abstract Chlainomonas(Chlamydomonadales, Chlorophyta) is one of the four genera of snow algae known to produce annual pink or red blooms in alpine snow. NoChlainomonasspecies have been successfully cultured in the laboratory, but diverse cell types have been observed from many field‐collected samples, from multiple species. The diversity of morphologies suggests these algae have complex life cycles with changes in ploidy. Over 7 years (2017–2023), we observed seasonal blooms dominated by aChlainomonasspecies from late spring through the summer months on a snow‐on‐lake habitat in an alpine basin in the North Cascade Mountains of Washington, USA. The Bagley LakeChlainomonasis distinct from previously reported species based on morphology and sequence data. We observed a similar collection of cell types observed in otherChlainomonasspecies, with the addition of swarming biflagellate cells that emerged from sporangia. We present a life cycle hypothesis for this species that links cell morphologies observed in the field to seasonally available habitat. The progression of cell types suggests cells are undergoing both meiosis and fertilization in the life cycle. Since the life cycle is the most fundamental biological feature of an organism, with direct consequences for evolutionary processes, it is critical to understand how snow algal life cycles will influence their responses to changes in their habitat driven by climate warming. For microbial taxa that live in extreme environments and are difficult to culture, temporal field studies, such as we report here, may be key to creating testable hypotheses for life cycles. 
    more » « less
  5. The life cycle of land plants is characterized by alternating generations of sexual gametophytes and asexual sporophytes. Unlike seed plants, seed-free vascular plants, including ferns, initiate and maintain pluripotent meristems during their gametophyte phase to sustain body expansion and drive the formation of sexual organs for reproduction. This review summarizes meristem development among various fern species during the gametophyte phase, focusing on the cellular basis of meristem initiation, proliferation, and termination. We review the different types of gametophytic meristems in ferns, including apical cell (AC)-based meristems, multicellular apical meristems, and multicellular marginal meristems. We highlight both conserved and lineage-specific patterns of cell division, which are closely associated with these meristem identities and play crucial roles in shaping gametophytic morphology. Additionally, we highlight recent progress in understanding the dynamics of cell division and growth that drive meristem development, through studies that integrate confocal live imaging and computational quantitative analysis. Furthermore, we discuss the influence of environmental and genetic factors on cell division activity in fern gametophytes, including conserved transcriptional regulators that sustain meristem indeterminacy and proliferation in the model fern Ceratopteris richardii. 
    more » « less