skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Diversity in Resource Use Strategies Promotes Productivity in Young Planted Tree Species Mixtures
ABSTRACT Mixed‐species forestry is a promising approach to enhance productivity, increase carbon sequestration, and mitigate climate change. Diverse forests, composed of species with varying structures and functional trait profiles, may have higher functional and structural diversity, which are attributes relevant to a number of mechanisms that can influence productivity. However, it remains unclear whether the context‐dependent roles of functional identity, functional diversity, and structural diversity can lead to a generalized understanding of tree diversity effects on stand productivity. To address these gaps, we analyzed growth data from 83,600 trees from 89 species across 21 young tree diversity experiments spanning five continents and three biomes. Results revealed a positive saturating relationship between tree species richness and stand productivity, with reduced variability in growth rates among more diverse stands. Structural equation modeling demonstrated that functional diversity mediated the positive effects of species richness on productivity. We additionally report a negative relationship between structural diversity and productivity, which decreased with increasing species richness. When partitioning net diversity effects, we found that selection effects played a dominant role in driving the overall increase in productivity in these predominantly young stands, contributing 77% of the net diversity effect. Selection effects increased with diversity in wood density. Furthermore, acquisitive species with lower wood density and higher leaf nitrogen content had higher productivity in more diverse stands, while conservative species showed neutral to slightly negative responses to species mixing. Together, these results suggest that combining acquisitive with conservative species allows acquisitive species to drive positive selection effects while conservative species tolerate competition. Thus, contrasting resource‐use strategies can enhance productivity to optimize mixed‐species forestry, with potential for both ecological and economic benefits.  more » « less
Award ID(s):
2044406 2106014
PAR ID:
10655184
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Global Change Biology
Date Published:
Journal Name:
Global Change Biology
Volume:
31
Issue:
9
ISSN:
1354-1013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Soil nitrogen (N) availability is of critical importance to the productivity of terrestrial ecosystems worldwide. Plant diversity continues to decline globally due to habitat conversion and degradation, but its influence on soil N remains uncertain. By conducting a global meta-analysis of 1,650 paired observations of soil N in plant species mixtures and monocultures from 149 studies, we show that, on average across observations, soil total N is 6.1% higher in species mixtures. This mixture effect on total N becomes more positive with the number of species in mixtures and with stand age. The mixture effects on net N mineralization rate and inorganic N concentrations shift from negative in young stands to positive in older stands with greater positive effects in more-diverse mixtures. These effects of mixtures were consistent among cropland, forest and grassland ecosystems and held across climate zones. Our results suggest that plant diversity conservation not only enhances the productivity of current vegetation but also increases soil N retention that will sustain the productivity of future vegetation. 
    more » « less
  2. Abstract The stability of forest productivity is a widely studied phenomenon often associated with tree species diversity. Yet, drivers of stability in forest structure and its consequences for forest productivity remain poorly understood. Using a large (10 ha) young tree diversity experiment, we evaluated how forest structure and multiple dimensions of diversity and composition are related to remotely sensed structural metrics and their stability through the growing season. We then examined whether structural stability (SS) across the growing season (April–October) could explain overyielding (i.e., the net biodiversity effect, NBE) in annual wood productivity. Using Uncrewed Aerial Vehicle‐Light Detecting and Ranging (UAV‐LiDAR), we surveyed experimental tree communities eight times at regular intervals from before bud break to after leaf senescence to derive metrics associated with canopy height heterogeneity, fractional plant cover, and forest structural complexity (based on fractal geometry). The inverse coefficients of variation for each of these three metrics through the season were used as measures of SS. These metrics were then coupled with annual tree inventories to evaluate their relationships with the NBE. Our findings indicate that wood volume and, to some extent, multiple dimensions of diversity and composition (i.e., taxonomic, phylogenetic, and functional) explain remotely sensed metrics of forest structure and their SS. Increases in wood volume as well as functional and phylogenetic diversity and variability (a measure of diversity independent of species richness) were linked to higher SS of forest complexity and canopy height heterogeneity. We further found that higher SS of forest complexity and fractional plant cover were associated with increased overyielding, which was mostly attributable to the complementarity effect. Structural equation models indicate that the stability of structural complexity explains more variation in NBE among plots than dimensions of diversity or variability, highlighting its value as an informative metric that likely integrates multiple drivers associated with overyielding. This study highlights the potential to integrate remote sensing and ecology to disentangle the role of forest SS in shaping ecological processes. 
    more » « less
  3. Although decades of research suggest that higher species richness improves ecosystem functioning and stability, planted forests are predominantly monocultures. To determine whether diversification of plantations would enhance aboveground carbon storage, we systematically reviewed over 11,360 publications, and acquired data from a global network of tree diversity experiments. We compiled a maximum dataset of 79 monoculture to mixed comparisons from 21 sites with all variables needed for a meta-analysis. We assessed aboveground carbon stocks in mixed-species planted forests vs. (a) the average of monocultures, (b) the best monoculture, and (c) commercial species monocultures, and examined potential mechanisms driving differences in carbon stocks between mixtures and monocultures. On average, we found that aboveground carbon stocks in mixed planted forests were 70% higher than the average monoculture, 77% higher than commercial monocultures, and 25% higher than the best performing monocultures, although the latter was not statistically significant. Overyielding was highest in four-species mixtures (richness range 2–6 species), but otherwise none of the potential mechanisms we examined (nitrogen-fixer present vs. absent; native vs. non-native/mixed origin; tree diversity experiment vs. forestry plantation) consistently explained variation in the diversity effects. Our results, predominantly from young stands, thus suggest that diversification could be a very promising solution for increasing the carbon sequestration of planted forests and represent a call to action for more data to increase confidence in these results and elucidate methods to overcome any operational challenges and costs associated with diversification. 
    more » « less
  4. Abstract Planting diverse forests has been proposed as a means to increase long‐term carbon (C) sequestration while providing many co‐benefits. Positive tree diversity–productivity relationships are well established, suggesting more diverse forests will lead to greater aboveground C sequestration. However, the effects of tree diversity on belowground C storage have the potential to either complement or offset aboveground gains, especially during early stages of afforestation when potential exists for large losses in soil C due to soil decomposition. Thus, experimental tests of the effects of planted tree biodiversity on changes in whole‐ecosystem C balance are needed. Here, we present changes in above‐ and belowground C pools 6 years after the initiation of the Forests and Biodiversity experiment (FAB1), consisting of high‐density plots of one, two, five, or 12 tree species planted in a common garden. The trees included a diverse range of native species, including both needle‐leaf conifer and broadleaf angiosperm species, and both ectomycorrhizal and arbuscular mycorrhizal species. We quantified the effects of species richness, phylogenetic diversity, and functional diversity on aboveground woody C, as well as on mineral soil C accumulation, fine root C, and soil aggregation. Surprisingly, changes in aboveground woody C pools were uncorrelated to changes in mineral soil C pools, suggesting that variation in soil C accumulation was not driven by the quantity of plant litter inputs. Aboveground woody C accumulation was strongly driven by species and functional identity; however, plots with higher species richness and functional diversity accumulated more C in aboveground wood than expected based on monocultures. We also found weak but significant effects of tree species richness, identity, and mycorrhizal type on soil C accumulation. To assess the role of the microbial community in mediating these effects, we further compared changes in soil C pools to phospholipid fatty acid (PLFA) profiles. Soil C pools and accumulation were more strongly correlated with specific microbial clades than with total microbial biomass or plant diversity. Our results highlight rapidly emerging and microbially mediated effects of tree biodiversity on soil C storage in the early years of afforestation that are independent of gains in aboveground woody biomass. 
    more » « less
  5. Summary Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems.Using 11 tree‐diversity experiments, we tested tree species richness–community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal‐associated tree species in these relationships.Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees.Our study provides novel explanations for variations in diversity–productivity relationships by suggesting that tree–mycorrhiza interactions can shape productivity in mixed‐species forest ecosystems. 
    more » « less