skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 6, 2026

Title: Tipping Points of Amazonian Forests: Beyond Myths and Toward Solutions
Amazon forests are undergoing rapid transformations driven by deforestation, climate change, fire, and other anthropogenic pressures, leading to the hypothesis that they may be nearing a catastrophic tipping point—beyond which ecosystems could shift to a permanently altered state. This review revisits the concept of an Amazon tipping point and assesses the risk of forest collapse from an ecological perspective. We synthesize evidence showing that environmental stressors can drive critical ecosystem transitions, either gradually through incremental loss of resilience or abruptly via synergistic feedbacks. The interplay between climate and land-use change amplifies risks to biodiversity, ecosystem services, and livelihoods. Yet, there is limited evidence for a single, system-wide tipping point. Instead, the Amazon's resilience—although not unlimited—offers meaningful pathways for recovery. The most immediate and effective strategies to support this resilience include slowing forest loss, mitigating climate change, reducing fire activity, curbing defaunation, and restoring degraded ecosystems. Without decisive action to address direct threats, the Amazon system may be pushed beyond safe ecological-climatological operating limits—even in the absence of sharply defined thresholds—due to the scale and persistence of anthropogenic pressures. Preserving the Amazon's ecological integrity and its vital role in regulating the global climate requires urgent, sustained conservation efforts in collaboration with local and Indigenous communities.  more » « less
Award ID(s):
2325993 2348580 2027827 2001184 1802754
PAR ID:
10655252
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
Annual Reviews
Date Published:
Journal Name:
Annual Review of Environment and Resources
Volume:
50
Issue:
1
ISSN:
1543-5938
Page Range / eLocation ID:
97 to 131
Subject(s) / Keyword(s):
Forests, tipping points,
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Amazon biome is being pushed by unsustainable economic drivers towards an ecological tipping point where restoration to its previous state may no longer be possible. This degradation is the result of self-reinforcing interactions between deforestation, climate change and fire. We assess the economic, natural capital and ecosystem services impacts and trade-offs of scenarios representing movement towards an Amazon tipping point and strategies to avert one using the Integrated Economic-Environmental Modeling (IEEM) Platform linked with spatial land use-land cover change and ecosystem services modeling (IEEM + ESM). Our approach provides the first approximation of the economic, natural capital and ecosystem services impacts of a tipping point, and evidence to build the economic case for strategies to avert it. For the five Amazon focal countries, namely, Brazil, Peru, Colombia, Bolivia and Ecuador, we find that a tipping point would create economic losses of US$256.6 billion in cumulative gross domestic product by 2050. Policies that would contribute to averting a tipping point, including strongly reducing deforestation, investing in intensifying agriculture in cleared lands, climate-adapted agriculture and improving fire management, would generate approximately US$339.3 billion in additional wealth and a return on investment of US$29.5 billion. Quantifying the costs, benefits and trade-offs of policies to avert a tipping point in a transparent and replicable manner can support the design of regional development strategies for the Amazon biome, build the business case for action and catalyze global cooperation and financing to enable policy implementation. 
    more » « less
  2. Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years. 
    more » « less
  3. Abstract Understanding the resilience of tropical forests to fire is essential for evaluating their dynamics under climate change and increasing land-use pressures. Here, we assess how different fire frequencies and intensities influence tree mortality and carbon dynamics in southeastern Amazonia. Using a replicated randomized block design with 24 plots (40 × 40 m), we applied four treatments: unburned control, one burn in 2016 (B1), two burns in 2013 and 2016 (B2), and two burns with added fuel (B2+) to increase fire intensity. Forest inventories conducted from 2012 to 2024 measured tree mortality, diversity, composition, and aboveground biomass. Fire frequency and intensity significantly increased mortality, particularly among small trees, but impacts on forest structure and productivity were more nuanced. Aboveground biomass declined modestly in burned plots, with the greatest loss in B2+ (13%). Aboveground net primary productivity (ANPP) dropped immediately post-burn, especially in B2 and B2+, and partially recovered by 2022–2024. In contrast, leaf area index (LAI) and litterfall rebounded within a couple of years, suggesting a degree of structural and functional resilience. Species richness and composition remained relatively stable in the years following the first experimental fires, but gradually declined and shifted in B2 and B2+ plots beginning in 2014. These results indicate that the experimental forests’ resilience to low-intensity and infrequent fires can prevent widespread forest collapse, but repeated and intensified burns likely undermine long-term resilience by altering forest structure, composition, and carbon dynamics. With the southeastern Amazon forests projected to burn more often in the coming decades, our results highlight both the vulnerability and recovery potential of these ecosystems. Maintaining ecological integrity and minimizing additional disturbances that influence fuel availability will be critical for sustaining forest functions under future fire regimes. 
    more » « less
  4. null (Ed.)
    Abstract Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation. Conversion implies major, extensive, and enduring changes in dominant species, life forms, or functions, with impacts on ecosystem services. In the present article, we synthesize a growing body of evidence of fire-driven conversion and our understanding of its causes across western North America. We assess our capacity to predict conversion and highlight important uncertainties. Increasing forest vulnerability to changing fire activity and climate compels shifts in management approaches, and we propose key themes for applied research coproduced by scientists and managers to support decision-making in an era when the prefire forest may not return. 
    more » « less
  5. Mechanisms underlying the loss of ecological resilience and a shift to an alternate regime with lower ecosystem service provisioning continues to be a leading debate in ecology, particularly in cases where evidence points to human actions and decision-making as the primary drivers of resilience loss and regime change. In this paper, we introduce the concept of coerced resilience as a way to explore the interplay among social power, ecological resilience, and fire management, and to better understand the unintended and undesired regime changes that often surprise ecosystem managers and governing officials. Philosophically, coercion is the opposite of freedom, and uses influence or force to gain compliance among local actors. The coercive force imposed by societal laws and policies can either enhance or reduce the potential to manage for essential structures and functions of ecological systems and, therefore, can greatly alter resilience. Using a classical fire-dependent regime shift from North America (tallgrass prairie to juniper woodland), and given that coercion is widespread in fire management today, we quantify relative differences in resilience that emerge in a policy-coerced fire system compared to a theoretical, policy-free fire system. Social coercion caused large departures in the fire conditions associated with alternative grassland and juniper woodland states, and the potential for a grassland state to emerge to dominance became increasingly untenable with fire as juniper cover increased. In contrast, both a treeless, grassland regime and a co-dominated grass-tree regime emerged across a wide range of fire conditions in the absence of policy controls. The severe coercive forcing present in fire management in the Great Plains, and corresponding erosion of grassland resilience, points to the need for transformative environmental governance and the rethinking of social power structures in modern fire policies. 
    more » « less