skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 2, 2026

Title: Radish: Radar Implicit Shapes Via Extreme-Wideband Sub-Terahertz Synthetic Aperture Radar
We explore synthetic aperture radar (SAR) 3D imaging capabilities in the sub-THz band using a novel 110-260 GHz experimental testbed. We propose RADar Implicit SHapes (RADISH), a post-processing method that leverages the SAR’s millimeter-level imaging resolution to estimate an object’s 3D shape. RADISH first c onverts high-resolution SAR images to a detailed point cloud of a scanned object. The point cloud is then used to fit an implicit neural representation to the object’s surface by approximating the signed distance function of the scene. We experimentally validate RADISH’s ability to represent the salient geometric features of real-world 3D objects.  more » « less
Award ID(s):
2215082
PAR ID:
10655261
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-1510-2
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Emerging autonomous driving systems require reliable perception of 3D surroundings. Unfortunately, current mainstream perception modalities, i.e., camera and Lidar, are vulnerable under challenging lighting and weather conditions. On the other hand, despite their all-weather operations, today's vehicle Radars are limited to location and speed detection. In this paper, we introduce MILLIPOINT, a practical system that advances the Radar sensing capability to generate 3D point clouds. The key design principle of MILLIPOINT lies in enabling synthetic aperture radar (SAR) imaging on low-cost commodity vehicle Radars. To this end, MILLIPOINT models the relation between signal variations and Radar movement, and enables self-tracking of Radar at wavelength-scale precision, thus realize coherent spatial sampling. Furthermore, MILLIPOINT solves the unique problem of specular reflection, by properly focusing on the targets with post-imaging processing. It also exploits the Radar's built-in antenna array to estimate the height of reflecting points, and eventually generate 3D point clouds. We have implemented MILLIPOINT on a commodity vehicle Radar. Our evaluation results show that MILLIPOINT effectively combats motion errors and specular reflections, and can construct 3D point clouds with much higher density and resolution compared with the existing vehicle Radar solutions. 
    more » « less
  2. The ubiquity of millimeter-wave (mmWave) technology could bring through-obstruction imaging to portable, mobile systems. Existing through-obstruction imaging systems rely on Synthetic Aperture Radar (SAR) technique, but emulating the SAR principle on hand-held devices has been challenging. We propose ViSAR, a portable platform that integrates an optical camera and mmWave radar to emulate the SAR principle and enable through-obstruction 3D imaging. ViSAR synchronizes the devices at the software-level and uses the Time Domain Backprojection algorithm to generate vision-augmented mmWave images. We have experimentally evaluated ViSAR by imaging several indoor objects. 
    more » « less
  3. Using millimeter wave (mmWave) signals for imaging has an important advantage in that they can penetrate through poor environmental conditions such as fog, dust, and smoke that severely degrade optical-based imaging systems. However, mmWave radars, contrary to cameras and LiDARs, suffer from low angular resolution because of small physical apertures and conventional signal processing techniques. Sparse radar imaging, on the other hand, can increase the aperture size while minimizing the power consumption and read out bandwidth. This paper presents CoIR, an analysis by synthesis method that leverages the implicit neural network bias in convolutional decoders and compressed sensing to perform high accuracy sparse radar imaging. The proposed system is data set-agnostic and does not require any auxiliary sensors for training or testing. We introduce a sparse array design that allows for a 5.5× reduction in the number of antenna elements needed compared to conventional MIMO array designs. We demonstrate our system's improved imaging performance over standard mmWave radars and other competitive untrained methods on both simulated and experimental mmWave radar data. 
    more » « less
  4. This paper proposes SquiggleMilli, a system that approximates traditional Synthetic Aperture Radar (SAR) imaging on mobile millimeter-wave (mmWave) devices. The system is capable of imaging through obstructions, such as clothing, and under low visibility conditions. Unlike traditional SAR that relies on mechanical controllers or rigid bodies, SquiggleMilli is based on the hand-held, fluidic motion of the mmWave device. It enables mmWave imaging in hand-held settings by re-thinking existing motion compensation, compressed sensing, and voxel segmentation. Since mmWave imaging suffers from poor resolution due to specularity and weak reflectivity, the reconstructed shapes could be imperceptible by machines and humans. To this end, SquiggleMilli designs a machine learning model to recover the high spatial frequencies in the object to reconstruct an accurate 2D shape and predict its 3D features and category. We have customized SquiggleMilli for security applications, but the model is adaptable to other applications with limited training samples. We implement SquiggleMilli on off-the-shelf components and demonstrate its performance improvement over the traditional SAR qualitatively and quantitatively. 
    more » « less
  5. Raynal, Ann M.; Ranney, Kenneth I. (Ed.)
    Frequency modulated continuous wave (FMCW) radar allows for a wide range of research applications. One primary use of this technology which is explored in this paper is the ground penetrating radar. To achieve high sensing performance, wide-band spectral reconstruction and sophisticated image reconstruction algorithm have been developed to overcome hardware limitations. Applications and future work include Synthetic Aperture Radar (SAR) imaging, innovative GPR, and unmanned aerial vehicle (UAV) radar systems. 
    more » « less