Third-generation photovoltaic materials, including metal halide perovskites (MHPs), colloidal quantum dots (QDs), copper zinc tin sulfide (CZTS), and organic semiconductors, among others, have become attractive in the past two decades. Unlike their first- and second-generation counterparts, these advanced materials boast properties beyond mere photovoltaic performance, such as mechanical flexibility, light weight, and cost-effectiveness. Meanwhile, these materials possess more intricate crystalline structures that aid in understanding and predicting their transport properties. In particular, the distinctive phonon dispersions in MHPs, the layered architecture in quasi-two-dimensional (2D) perovskites, the strong quantum confinement in QDs, and the complex crystal structures interspersed with abundant disorders in quaternary CZTS result in unique and sometimes anomalous thermal transport behaviors. Concurrently, the criticality of thermal management in applications such as photovoltaics, thermoelectrics, light emitting diodes, and photodetection devices has received increased recognition, considering that many of these third-generation photovoltaic materials are not good thermal conductors. Effective thermal management necessitates precise measurement, advanced modeling, and a profound understanding and interpretation of thermal transport properties in these novel materials. In this review, we provide a comprehensive summary of various techniques for measuring thermal transport properties of these materials and discuss the ultralow thermal conductivities of three-dimensional (3D) MHPs, superlattice-like thermal transport in 2D perovskites, and novel thermal transport characteristics inherent in QDs and CZTS. By collecting and comparing the literature-reported results, we offer a thorough discussion on the thermal transport phenomenon in these materials. The collective understanding from the literature in this area, as reviewed in this article, can provide guidance for improving thermal management across a wide spectrum of applications extending beyond photovoltaics.
more »
« less
This content will become publicly available on December 1, 2026
Anisotropic Thermal Transport in Quasi-2D Ruddlesden-Popper Hybrid Perovskite Superlattices
Two-dimensional hybrid metal-halide perovskites (2D-MHPs) have emerged as important solution-processed semiconductors with favorable optical and electronic properties for diverse applications in photovoltaics, optoelectronics, and spintronics. The quasi-2D layered structures, featuring large acoustic impedance mismatches between the organic and inorganic sublattices, are expected to result in distinct and anisotropic thermal transport properties along the cross-plane and in-plane directions. Here, we introduce transducer-free vibrational-pump-visible-probe (VPVP) approaches that enable accurate quantification of anisotropic thermal transport properties in various archetypical single-crystalline 2D-MHPs. Specifically, using VPVP spectroscopy and VPVP microscopy, we measure the anisotropic thermal diffusivities of 2D-MHPs with systematically varied Pb-I octahedral layer thicknesses, as well as organic spacer types and lengths, revealing how these structural parameters alter the cross-plane and in-plane thermal transport properties in distinct ways. While diffuse interface scattering plays an important role in dictating cross-plane thermal transport, in-plane thermal transport is primarily determined by phonon transport within interconnected inorganic layers. Density functional theory incorporating four-phonon scatterings provides further insight into the low thermal conductivity and modest thermal conduction anisotropy in 2D-MHPs. Our work demonstrates a new all-optical and noncontact method, which requires minimal sample preparation and allows direct visualization of cross-plane and in-plane thermal transport, potentially compatible with sample environments. The demonstrated VPVP approaches can advance understanding of thermal transport in 2D-MHPs as well as wide-ranging hybrid and polymeric semiconductors beyond 2D-MHPs.
more »
« less
- PAR ID:
- 10655267
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review X
- Volume:
- 15
- Issue:
- 4
- ISSN:
- 2160-3308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Interfacial thermal boundary resistance (TBR) plays a critical role in near‐junction thermal management of modern electronics. In particular, TBR can dominate heat dissipation and has become increasingly important due to the continuous emergence of novel nanomaterials with promising electronic and thermal applications. A highly anisotropic TBR across a prototype 2D material, i.e., black phosphorus, is reported through a crystal‐orientation‐dependent interfacial transport study. The measurements show that the metal–semiconductor TBR of the cross‐plane interfaces is 241% and 327% as high as that of the armchair and zigzag direction‐oriented interfaces, respectively. Atomistic ab initio calculations are conducted to analyze the anisotropic and temperature‐dependent TBR using density functional theory (DFT)‐derived full phonon dispersion relation and molecular dynamics simulation. The measurement and modeling work reveals that such a highly anisotropic TBR can be attributed to the intrinsic band structure and phonon spectral transmission. Furthermore, it is shown that phonon hopping between different branches is important to modulate the interfacial transport process but with directional preferences. A critical fundamental understanding of interfacial thermal transport and TBR–structure relationships is provided, which may open up new opportunities in developing advanced thermal management technology through the rational control over nanostructures and interfaces.more » « less
-
Nanocrystalline silicon can have unique thermal transport and mechanical properties governed by its constituent grain microstructure. Here, we use phonon ray-tracing and molecular dynamics simulations to demonstrate the largely tunable thermomechanical behaviors with varying grain sizes (a0) and aspect ratios (ξ). Our work shows that, by selectively increasing the grain size along the heat transfer direction while keeping the grain area constant, the in-plane lattice thermal conductivity (kx) increases more significantly than the cross-plane lattice thermal conductivity (ky) due to anisotropic phonon–grain boundary scattering. While kx generally increases with increasing ξ, a critical value exists for ξ at which kx reaches its maximum. Beyond this transition point, further increases in ξ result in a decrease in kx due to substantial scattering of low-frequency phonons with anisotropic grain boundaries. Moreover, we observe reductions in the elastic and shear modulus with decreasing grain size, and this lattice softening leads to significant reductions in phonon group velocity and thermal conductivity. By considering both thermal and mechanical size effects, we identify two distinct regimes of thermal transport, in which anisotropic phonon–grain boundary scattering becomes more appreciable at low temperatures and lattice softening becomes more pronounced at high temperatures. Through phonon spectral analysis, we attribute the significant thermal conductivity anisotropy in nanograined silicon to grain boundary scattering of low-frequency phonons and the softening-driven thermal conductivity reduction to Umklapp scattering of high-frequency phonons. These findings offer insights into the manipulation of thermomechanical properties of nanocrystalline silicon via microstructure engineering, carrying profound implications for the development of future nanomaterials.more » « less
-
Abstract 2D layered materials have emerged in recent years as a new platform to host novel electronic, optical, or excitonic physics and develop unprecedented nanoelectronic and energy applications. By definition, these materials are strongly anisotropic between the basal plane and cross the plane. The structural and property anisotropies inside their basal plane, however, are much less investigated. Black phosphorus, for example, is a 2D material that has such in‐plane anisotropy. Here, a rare chemical form of arsenic, called black‐arsenic (b‐As), is reported as a cousin of black phosphorus, as an extremely anisotropic layered semiconductor. Systematic characterization of the structural, electronic, thermal, and electrical properties of b‐As single crystals is performed, with particular focus on its anisotropies along two in‐plane principle axes, armchair (AC) and zigzag (ZZ). The analysis shows that b‐As exhibits higher or comparable electronic, thermal, and electric transport anisotropies between the AC and ZZ directions than any other known 2D crystals. Such extreme in‐plane anisotropies can potentially implement novel ideas for scientific research and device applications.more » « less
-
Abstract Electron–phonon interactions play an essential role in charge transport and transfer processes in semiconductors. For most structures, tailoring electron–phonon interactions for specific functionality remains elusive. Here, it is shown that, in hybrid perovskites, coherent phonon modes can be used to manipulate charge transfer. In the 2D double perovskite, (AE2T)2AgBiI8(AE2T: 5,5“‐diylbis(amino‐ethyl)‐(2,2”‐(2)thiophene)), the valence band maximum derived from the [Ag0.5Bi0.5I4]2–framework lies in close proximity to the AE2T‐derived HOMO level, thereby forming a type‐II heterostructure. During transient absorption spectroscopy, pulsed excitation creates sustained coherent phonon modes, which periodically modulate the associated electronic levels. Thus, the energy offset at the organic–inorganic interface also oscillates periodically, providing a unique opportunity for modulation of interfacial charge transfer. Density‐functional theory corroborates the mechanism and identifies specific phonon modes as likely drivers of the coherent charge transfer. These observations are a striking example of how electron–phonon interactions can be used to manipulate fundamentally important charge and energy transfer processes in hybrid perovskites.more » « less
An official website of the United States government
