skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Techno-economic analysis and network design for CO₂ conversion to jet fuels in the United States
The conversion of carbon dioxide (CO2) into jet fuel holds significant potential for reducing CO2 emissions, providing an alternative to carbon-based resources, and offering a renewable means of energy storage. The objective of this study is to conduct a techno-economic analysis and optimize the supply chain network for converting CO2 to jet fuel in the United States, aiming to minimize total costs while assessing the environmental and economic feasibility of two CO2 conversion pathways. This first pathway is based on Fischer-Tropsch synthesis (FTS), and the other one is based on the valorization and upgrading of light methanol (MeOH). Incorporating spatial and techno-economic data, a mixed-integer linear programming model was developed to select source plants and conversion pathways, locations of conversion refinery sites, and the amount of captured CO2 across the United States. The optimal results indicate that the FTS pathway is adopted at all selected refineries when the hydrogen price is $1000/t and the operating cost, mainly electricity used in conversion, is reduced to 5 % of its current level. Under this scenario, the total annual profit is $8B and the net carbon emissions are −88,783,284 tons. The sensitivity analyses reveal that the prices of electricity and hydrogen significantly contribute to total production costs. The CO2 recycle percentage of the FTS pathway influences the choice of applied pathways at refineries. Additionally, a higher conversion rate holds a substantial promise for reducing the total production cost and can make the MeOH pathway a viable choice.Not Available  more » « less
Award ID(s):
1903572
PAR ID:
10655479
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Renewable and Sustainable Energy Reviews
Volume:
210
Issue:
C
ISSN:
1364-0321
Page Range / eLocation ID:
115191
Subject(s) / Keyword(s):
Renewable jet fuelSupply chain optimizationCO2 reductionTechno-economic analysisLife cycle analysis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrochemical conversion of carbon dioxide (CO2) to valuable products could provide a transformative pathway to produce renewable fuels while adding value to the CO2 captured at point sources. Here, we investigate the thermodynamic feasibility and economic viability of the electrochemical CO2 reduction reaction to various carbon-containing fuels. In particular, we explore various pathways for conversion of CO2 to dimethyl ether (DME), liquid propane gas, and renewable natural gas. We compare and contrast the use of two different proton sources, including hydrogen gas and water vapor at the anode, on the capital and operating costs (OPEX) of electrochemical systems to produce DME. The results indicate that the electrical costs are the most significant portion of OPEX, demonstrating costs of 0.2–0.6 $/kWh per metric ton of DME. DME production using carbon monoxide and formic acid as intermediates proved to be the most cost-effective, demonstrating levelized costs of energy of 0.28 $/kWh with over 0.15 $/kWh of cost recovery possible through renewable hydrogen tax credits and oxygen and hydrogen gas recovery. 
    more » « less
  2. Anthropogenic carbon dioxide (CO2) release in the atmosphere from fossil fuel combustion has inspired scientists to study CO2 to fuel conversion. Oxygenic phototrophs such as cyanobacteria have been used to produce biofuels using CO2. However, oxygen generation during oxygenic photosynthesis affects biofuel production efficiency. To produce n-butanol (biofuel) from CO2, here we introduced an n-butanol biosynthesis pathway into an anoxygenic (non-oxygen evolving) photoautotroph, Rhodopseudomonas palustris TIE-1 (TIE-1). Using different carbon, nitrogen, and electron sources, we achieved n-butanol production in wild-type TIE-1 and mutants lacking electron-consuming (nitrogen-fixing) or acetyl-CoA-consuming (polyhydroxybutyrate and glycogen synthesis) pathways. The mutant lacking the nitrogen-fixing pathway produced highest n-butanol. Coupled with novel hybrid bioelectrochemical platforms, this mutant produced nbutanol using CO2, solar panel-generated electricity, and light, with high electrical energy conversion efficiency. Overall, this approach showcases TIE-1 as an attractive microbial chassis for carbon-neutral n-butanol bioproduction using sustainable, renewable, and abundant resources. 
    more » « less
  3. Generation of coproducts from nutrients is purported to improve the sustainability of algae-derived transportation fuels by minimizing life cycle impacts and improving economic sustainability. Although algae cultivation produces lipids that is upgraded to drop-in transportation fuel products, life cycle assessment and techno-economic analysis have shown that without coproducts, energy/economic returns are diminishing regardless of processing methods. This study utilizes a combined flash hydrolysis (FH), hydrothermal liquefaction (HTL), and coproduct conversion technology (atmospheric precipitation/AP; hydrothermal mineralization/HTM) to conserve the most recyclable nutrients for coproduct marketability. Six biofuel pathways were developed and compared in terms of “well-to-pump” energy, life cycle greenhouse gas (LC-GHG) emissions, and economic profitability: renewable diesel II (RDII), renewable gasoline (RG), and hydroprocessed renewable jet (HRJ) fuel, each were modeled for AP and HTM coproduct conversion. A functional unit of 1 MJ usable energy was employed. RG showed a promising energy-return-on-investment (EROI) due to multiple coproducts. All models demonstrated favorable EROI (EROI > 1). LC-GHG emissions tie in with EROI such that RG produced the least emissions. HRJ-HTM was determined to be the most profitable model with a profitability index (PI) of 0.75. Sensitivity analyses revealed that dewatering affects EROI and PI significantly. To achieve break-even, gasoline must sell at $4.10/gal, diesel at $5.64/gal, and jet fuel at $3.43/gal. 
    more » « less
  4. Abstract Green hydrogen produced using renewable electricity could play an important role in a clean energy future. This paper seeks to analyze the techno-economic performance of integrated wind and hydrogen systems under different conditions. A co-located wind and hydrogen hybrid system is optimized to reduce the total system cost. We have adopted and improved a state-of-the-art techno-economic tool REopt, developed by the National Renewable Energy Laboratory (NREL), for optimal planning of the integrate energy system (IES). In addition to wind and electrolyzer components, we have also considered battery energy storage, hydrogen tank, and hydrogen fuel cell in the IES. The results show that (i) adding electrolyzers to the grid-connected wind energy system could reduce the total system cost by approximately 8.9%, and (ii) adding electrolyzers, hydrogen tank, and hydrogen fuel cells could reduce the total system cost by approximately 30%. 
    more » « less
  5. The catalytic conversion of CO2 to value-added chemicals and fuels has been long regarded as a promising approach to the mitigation of CO2 emissions if green hydrogen is used. Light olefins, particularly ethylene and propylene, as building blocks for polymers and plastics, are currently produced primarily from CO2-generating fossil resources. The identification of highly efficient catalysts with selective pathways for light olefin production from CO2 is a high-reward goal, but it has serious technical challenges, such as low selectivity and catalyst deactivation. In this review, we first provide a brief summary of the two dominant reaction pathways (CO2-Fischer-Tropsch and MeOH-mediated pathways), mechanistic insights, and catalytic materials for CO2 hydrogenation to light olefins. Then, we list the main deactivation mechanisms caused by carbon deposition, water formation, phase transformation and metal sintering/agglomeration. Finally, we detail the recent progress on catalyst development for enhanced olefin yields and catalyst stability by the following catalyst functionalities: (1) the promoter effect, (2) the support effect, (3) the bifunctional composite catalyst effect, and (4) the structure effect. The main focus of this review is to provide a useful resource for researchers to correlate catalyst deactivation and the recent research effort on catalyst development for enhanced olefin yields and catalyst stability. 
    more » « less