SUMMARY A number of recent modelling studies of induced seismicity have used the 1994 rate-and-state friction model of Dieterich 1994 to account for the fact that earthquake nucleation is not instantaneous. Notably, the model assumes a population of seismic sources accelerating towards instability with a distribution of initial slip speeds such that they would produce earthquakes steadily in the absence of any perturbation to the system. This assumption may not be valid in typical intraplate settings where most examples of induced seismicity occur, since these regions have low stressing rates and initially low seismic activity. The goal of this paper is twofold. First, to derive a revised Coulomb rate-and-state model, which takes into account that seismic sources can be initially far from instability. Second, to apply and test this new model, called the Threshold rate-and-state model, on the induced seismicity of the Groningen gas field in the Netherlands. Stress changes are calculated based on a model of reservoir compaction since the onset of gas production. We next compare the seismicity predicted by our threshold model and Dieterich’s model with the observations. The two models yields comparable spatial distributions of earthquakes in good agreement with the observations. We find however that the Threshold model provides a better fit to the observed time-varying seismicity rate than Dieterich’s model, and reproduces better the onset, peak and decline of the observed seismicity rate. We compute the maximum magnitude expected for each model given the Gutenberg–Richter distribution and compare to the observations. We find that the Threshold model both shows better agreement with the observed maximum magnitude and provides result consistent with lack of observed seismicity prior to 1993. We carry out analysis of the model fit using a Chi-squared reduced statistics and find that the model fit is dramatically improved by smoothing the seismicity rate. We interpret this finding as possibly suggesting an influence of source interactions, or clustering, on a long timescale of about 3–5 yr.
more »
« less
Earthquake Growth Inhibited at Higher Coulomb Stress Change Rate at Groningen
Abstract Gas extraction from the Groningen gas field resulted in significant induced seismicity. We analyze the magnitude‐frequency distribution of these earthquakes in space, time and in view of stress changes calculated based on gas production and reservoir properties. Previous studies suggested variations related to reservoir geometry and stress. While we confirm the spatial variations, we do not detect a clear sensitivity of b‐value to Coulomb stress changes. However, we find that b‐value correlates positively with the rate of Coulomb stress changes. This correlation is statistically significant and robust to uncertainties related to stress change calculation. This study thus points to a possible influence of stress change rate on the probability of the magnitude of induced earthquakes.
more »
« less
- Award ID(s):
- 1822214
- PAR ID:
- 10655488
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 20
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Deterministic earthquake prediction remains elusive, but time‐dependent probabilistic seismicity forecasting seems within reach thanks to the development of physics‐based models relating seismicity to stress changes. Difficulties include constraining the earthquake nucleation model and fault initial stress state. Here, we analyze induced earthquakes from the Groningen gas field, where production is strongly seasonal, and seismicity began 3 decades after production started. We use the seismicity response to stress variations to constrain the earthquake nucleation process and calibrate models for time‐dependent forecasting of induced earthquakes. Remarkable agreements of modeled and observed seismicity are obtained when we consider (a) the initial strength excess, (b) the finite duration of earthquake nucleation, and (c) the seasonal variations of gas production. We propose a novel metric to quantify the nucleation model's ability to capture the damped amplitude and the phase of the seismicity response to short‐timescale (seasonal) stress variations which allows further tightening the model's parameters.more » « less
-
Abstract Reservoir operations for gas extraction, fluid disposal, carbon dioxide storage, or geothermal energy production are capable of inducing seismicity. Modeling tools exist for seismicity forecasting using operational data, but the computational costs and uncertainty quantification (UQ) pose challenges. We address this issue in the context of seismicity induced by gas production from the Groningen gas field using an integrated modeling framework, which combines reservoir modeling, geomechanical modeling, and stress-based earthquake forecasting. The framework is computationally efficient thanks to a 2D finite-element reservoir model, which assumes vertical flow equilibrium, and the use of semianalytical solutions to calculate poroelastic stress changes and predict seismicity rate. The earthquake nucleation model is based on rate-and-state friction and allows for an initial strength excess so that the faults are not assumed initially critically stressed. We estimate uncertainties in the predicted number of earthquakes and magnitudes. To reduce the computational costs, we assume that the stress model is true, but our UQ algorithm is general enough that the uncertainties in reservoir and stress models could be incorporated. We explore how the selection of either a Poisson or a Gaussian likelihood influences the forecast. We also use a synthetic catalog to estimate the improved forecasting performance that would have resulted from a better seismicity detection threshold. Finally, we use tapered and nontapered Gutenberg–Richter distributions to evaluate the most probable maximum magnitude over time and account for uncertainties in its estimation. Although we did not formally account for uncertainties in the stress model, we tested several alternative stress models, and found negligible impact on the predicted temporal evolution of seismicity and forecast uncertainties. Our study shows that the proposed approach yields realistic estimates of the uncertainties of temporal seismicity and is applicable for operational forecasting or induced seismicity monitoring. It can also be used in probabilistic traffic light systems.more » « less
-
Abstract Gas extraction from the Groningen gas reservoir, located in the northeastern Netherlands, has led to a drop in pressure and drove compaction and induced seismicity. Stress-based models have shown success in forecasting induced seismicity in this particular context and elsewhere, but they generally assume that earthquake clustering is negligible. To assess earthquake clustering at Groningen, we generate an enhanced seismicity catalog using a deep-learning-based workflow. We identify and locate 1369 events between 2015 and 2022, including 660 newly detected events not previously identified by the standard catalog from the Royal Netherlands Meteorological Institute. Using the nearest-neighbor distance approach, we find that 72% of events are background independent events, whereas the remaining 28% belong to clusters. The 55% of the clustered events are swarm-like, whereas the rest are aftershock-like. Among the swarms include five newly identified sequences propagating at high velocities between 3 and 50 km/day along directions that do not follow mapped faults or existing structures and frequently exhibit a sharp turn in the middle of the sequence. The swarms occurred around the time of the maximum compaction rate between November 2016 and May 2017 in the Zechstein layer, above the anhydrite caprock, and well-above the directly induced earthquakes that occur within the reservoir and caprock. We suggest that these swarms are related to the aseismic deformation within the salt formation rather than fluids. This study suggests that the propagating swarms do not always signify fluid migration.more » « less
-
Abstract Although transformational faulting in the rim of the metastable olivine wedge is hypothesized as a triggering mechanism of deep-focus earthquakes, there is no direct evidence of such rim. Variations of thebvalue – slope of the Gutenberg-Richter distribution – have been used to decipher triggering and rupture mechanisms of deep earthquakes. However, detection limits prevent full understanding of these mechanisms. Using the Japan Meteorological Agency catalog, we estimatebvalues of deep earthquakes in the northwestern Pacific Plate, clustered in four regions with unsupervised machine learning. Theb-value analysis of Honshu and Izu deep seismicity reveals a kink at magnitude 3.7–3.8, where thebvalue abruptly changes from 1.4–1.7 to 0.6–0.7. The anomalously highbvalues for small earthquakes highlight enhanced transformational faulting, likely catalyzed by deep hydrous defects coinciding with the unstable rim of the metastable olivine wedge, the thickness of which we estimate at$$\sim$$ 1 km.more » « less
An official website of the United States government

