ABSTRACT Plant–microbe associations are ubiquitous, but parsing contributions of dispersal, host filtering, competition and temperature on microbial community composition is challenging. Floral nectar‐inhabiting microbes, which can influence flowering plant health and pollination, offer a tractable system to disentangle community assembly processes. We inoculated a synthetic community of yeasts and bacteria into nectars of 31 plant species while excluding pollinators. We monitored weather and, after 24 h, collected and cultured communities. We found a strong signature of plant species on resulting microbial abundance and community composition, in part explained by plant phylogeny and nectar peroxide content, but not floral morphology. Increasing temperature reduced microbial diversity, while higher minimum temperatures increased growth, suggesting complex ecological effects of temperature. Consistent nectar microbial communities within plant species could enable plant or pollinator adaptation. Our work supports the roles of host identity, traits and temperature in microbial community assembly, and indicates diversity–productivity relationships within host‐associated microbiomes.
more »
« less
This content will become publicly available on May 1, 2026
In the nectar, there are answers: exploring the intersection of colored nectars and reactive oxygen species in manipulating pollinator behavior
Summary Nectar, a vital mediator of plant–pollinator interactions, exhibits remarkable chemical diversity beyond sugars, including reactive oxygen species and specialized metabolites such as pigments. Colored nectars, present in over 70 species, function as visual signals, inhibitors of microbial growth, or nutritional rewards, underscoring their ecological importance. Reactive oxygen species contribute to pigment formation and nectar stability, highlighting their dual roles in nectar chemistry and defense. Advances in analytical techniques and interdisciplinary research have highlighted the complex interplay between nectar composition, pollinator behavior, and microbial communities, emphasizing nectar's multifaceted roles in plant fitness and ecosystem dynamics.
more »
« less
- Award ID(s):
- 2025297
- PAR ID:
- 10655514
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 246
- Issue:
- 3
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- 901 to 910
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary A fewCapsicum(pepper) species produce yellow‐colored floral nectar, but the chemical identity and biological function of the yellow pigment are unknown.A combination of analytical biochemistry techniques was used to identify the pigment that givesCapsicum baccatumandCapsicum pubescensnectars their yellow color. Microbial growth assays, visual modeling, and honey bee preference tests for artificial nectars containing riboflavin were used to assess potential biological roles for the nectar pigment.High concentrations of riboflavin (vitamin B2) give the nectars their intense yellow color. Nectars containing riboflavin generate reactive oxygen species when exposed to light and reduce microbial growth. Visual modeling also indicates that the yellow color is highly conspicuous to bees within the context of the flower. Lastly, field experiments demonstrate that honey bees prefer artificial nectars containing riboflavin.SomeCapsicumnectars contain a yellow‐colored vitamin that appears to play roles in (1) limiting microbial growth, (2) the visual attraction of bees, and (3) as a reward to nectar‐feeding flower visitors (potential pollinators), which is especially interesting since riboflavin is an essential nutrient for brood rearing in insects. These results cumulatively suggest that the riboflavin found in someCapsicumnectars has several functions.more » « less
-
Abstract Floral nectar, an important resource for pollinators, is inhabited by microbes such as yeasts and bacteria, which have been shown to influence pollinator preference. Dynamic and complex plant-pollinator-microbe interactions are likely to be affected by a rapidly changing climate, as each player has their own optimal growth temperatures and phenological responses to environmental triggers, such as temperature. To understand how warming due to climate change is influencing nectar microbial communities, we incubated a natural nectar microbial community at different temperatures and assessed the subsequent nectar chemistry and preference of the common eastern bumble bee, Bombus impatiens . The microbial community in floral nectar is often species-poor, and the cultured Brassica rapa nectar community was dominated by the bacterium Fructobacillus . Temperature increased the abundance of bacteria in the warmer treatment. Bumble bees preferred nectar inoculated with microbes, but only at the lower, ambient temperature. Warming therefore induced an increase in bacterial abundance which altered nectar sugars and led to significant differences in pollinator preference.more » « less
-
Abstract Many plants have evolved nutrient rewards to attract pollinators to flowers, but most research has focused on the sugar content of floral nectar resources. Concentrations of sodium in floral nectar (a micronutrient in low concentrations in nectar) can vary substantially both among and within co‐occurring species. It is hypothesized that sodium concentrations in floral nectar might play an important and underappreciated role in plant–pollinator interactions, especially because many animals, including pollinators, are sodium limited in nature. Yet, the consequences of variation in sodium concentrations in floral nectar remain largely unexplored. Here, we investigate whether enriching floral nectar with sodium influences the composition, diversity, and frequency of plant–pollinator interactions. We experimentally enriched sodium concentrations in four plant species in a subalpine meadow in Colorado, USA. We found that flowers with sodium‐enriched nectar received more visits from a greater diversity of pollinators throughout the season. Different pollinator species foraged more frequently on flowers enriched with sodium and showed evidence of other changes to foraging behavior, including greater dietary evenness. These findings are consistent with the “salty nectar hypothesis,” providing evidence for the importance of sodium limitation in pollinators and suggesting that even small nectar constituents can shape plant–pollinator interactions.more » « less
-
Floral nectar is prone to colonization by nectar-adapted yeasts and bacteria via air-, rain-, and animal-mediated dispersal. Upon colonization, microbes can modify nectar chemical constituents that are plant-provisioned or impart their own through secretion of metabolic by-products or antibiotics into the nectar environment. Such modifications can have consequences for pollinator perception of nectar quality, as microbial metabolism can leave a distinct imprint on olfactory and gustatory cues that inform foraging decisions. Furthermore, direct interactions between pollinators and nectar microbes, as well as consumption of modified nectar, have the potential to affect pollinator health both positively and negatively. Here, we discuss and integrate recent findings from research on plant–microbe–pollinator interactions and their consequences for pollinator health. We then explore future avenues of research that could shed light on the myriad ways in which nectar microbes can affect pollinator health, including the taxonomic diversity of vertebrate and invertebrate pollinators that rely on this reward. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.more » « less
An official website of the United States government
