skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Knotted handlebodies in the 4-sphere and 5-ball
For every integerg\ge 2we construct 3-dimensional genus-g1-handlebodies smoothly embedded inS^{4}with the same boundary, and which are defined by the same cut systems of their boundary, yet which are not isotopic rel. boundary via any locally flat isotopy even when their interiors are pushed intoB^{5}. This proves a conjecture of Budney–Gabai for genus at least 2.  more » « less
Award ID(s):
2213295 2304704
PAR ID:
10655519
Author(s) / Creator(s):
; ;
Publisher / Repository:
EMS Press
Date Published:
Journal Name:
Journal of the European Mathematical Society
ISSN:
1435-9855
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For$$g\ge 2$$and$$n\ge 0$$, let$$\mathcal {H}_{g,n}\subset \mathcal {M}_{g,n}$$denote the complex moduli stack ofn-marked smooth hyperelliptic curves of genusg. A normal crossings compactification of this space is provided by the theory of pointed admissible$$\mathbb {Z}/2\mathbb {Z}$$-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of$$\mathcal {H}_{g, n}$$. Using this graph complex, we give a sum-over-graphs formula for the$$S_n$$-equivariant weight zero compactly supported Euler characteristic of$$\mathcal {H}_{g, n}$$. This formula allows for the computer-aided calculation, for each$$g\le 7$$, of the generating function$$\mathsf {h}_g$$for these equivariant Euler characteristics for alln. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissibleG-covers of genus zero curves, whenGis abelian, as a symmetric$$\Delta $$-complex. We use these complexes to generalize our formula for$$\mathsf {h}_g$$to moduli spaces ofn-pointed smooth abelian covers of genus zero curves. 
    more » « less
  2. On a smooth, compact, Riemannian manifold without boundary(M,g), let\Delta_{g}be the Laplace–Beltrami operator. We define the orthogonal projection operator \Pi_{I_\lambda}\colon L^{2}(M)\to \bigoplus_{\mathclap{\lambda_j\in I_\lambda}}\ker(\Delta_{g}+\lambda_{j}^{2}) for an intervalI_{\lambda}centered around\lambda\in\Rof a small, fixed length. The Schwartz kernel,\Pi_{I_\lambda}(x,y), of this operator plays a key role in the analysis of monochromatic random waves, a model for high energy eigenfunctions. It is expected that\Pi_{I_\lambda}(x,y)has universal asymptotics as\lambda \to \inftyin a shrinking neighborhood of the diagonal inM\times M(providedI_{\lambda}is chosen appropriately) and hence that certain statistics for monochromatic random waves have universal behavior. These asymptotics are well known for the torus and the round sphere, and were recently proved to hold near points inMwith few geodesic loops by Canzani–Hanin. In this article, we prove that the same universal asymptotics hold in the opposite case of Zoll manifolds (manifolds all of whose geodesics are closed with a common period) under an assumption on the volume of loops with length incommensurable with the minimal common period. 
    more » « less
  3. Pure three-dimensional gravity is a renormalizable theory with twofree parameters labelled byG G and\Lambda Λ .As a consequence, correlation functions of the boundary stress tensor inAdS_3 3 are uniquely fixed in terms of one dimensionless parameter, which is thecentral charge of the Virasoro algebra. The same argument implies thatAdS_3 3 gravity at a finite radial cutoff is a renormalizable theory, but nowwith one additional parameter corresponding to the cutoff location. Thistheory is conjecturally dual to aT\overline{T} T T ¯ -deformedCFT, assuming that such theories actually exist. To elucidate this, westudy the quantum theory of boundary gravitons living on a cutoff planarboundary and the associated correlation functions of the boundary stresstensor. We compute stress tensor correlation functions to two-loop order(G G being the loop counting parameter), extending existing tree levelresults. This is made feasible by the fact that the boundary gravitonaction simplifies greatly upon making a judicious field redefinition,turning into the Nambu-Goto action. After imposing Lorentz invariance,the correlators at this order are found to be unambiguous up to a singleundetermined renormalization parameter. 
    more » « less
  4. We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control \begin{document}$ g $$\end{document}. Optimal interior and boundary regularity results were given in [1], after [41], when \begin{document}$$ g \in L^2(0, T;L^2(\Gamma)) \equiv L^2(\Sigma) $$\end{document}, which, moreover, in the canonical case \begin{document}$$ \gamma = 0 $$\end{document}, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [19], [17], [24,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether \begin{document}$$ \gamma = 0 $$\end{document} or \begin{document}$$ 0 \neq \gamma \in L^{\infty}(\Omega) $$\end{document}, since \begin{document}$$ \gamma \neq 0 $$\end{document} is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with \begin{document}$$ g $$\end{document} "smoother" than \begin{document}$$ L^2(\Sigma) $$\end{document}, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [17]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [22], [23], [37] for control smoother than \begin{document}$$ L^2(0, T;L^2(\Gamma)) $$\end{document}, and [44] for control less regular in space than \begin{document}$$ L^2(\Gamma) $$\end{document}$. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [42], [24,Section 9.8.2]. 
    more » « less
  5. Abstract Given$$g \in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } , let$$\Sigma _g$$ Σ g denote the closed surface of genusgwith a Cantor set removed, if$$g<\infty $$ g < ; or the blooming Cantor tree, when$$g= \infty $$ g = . We construct a family$$\mathfrak B(H)$$ B ( H ) of subgroups of$${{\,\textrm{Map}\,}}(\Sigma _g)$$ Map ( Σ g ) whose elements preserve ablock decompositionof$$\Sigma _g$$ Σ g , andeventually like actlike an element ofH, whereHis a prescribed subgroup of the mapping class group of the block. The group$$\mathfrak B(H)$$ B ( H ) surjects onto an appropriate symmetric Thompson group of Farley–Hughes; in particular, it answers positively. Our main result asserts that$$\mathfrak B(H)$$ B ( H ) is of type$$F_n$$ F n if and only ifHis. As a consequence, for every$$g\in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } and every$$n\ge 1$$ n 1 , we construct a subgroup$$G <{{\,\textrm{Map}\,}}(\Sigma _g)$$ G < Map ( Σ g ) that is of type$$F_n$$ F n but not of type$$F_{n+1}$$ F n + 1 , and which contains the mapping class group of every compact surface of genus$$\le g$$ g and with non-empty boundary. 
    more » « less