Recommender systems may be confounded by various types of confounding factors (also called confounders) that may lead to inaccurate recommendations and sacrificed recommendation performance. Current approaches to solving the problem usually design each specific model for each specific confounder. However, real-world systems may include a huge number of confounders and thus designing each specific model for each specific confounder could be unrealistic. More importantly, except for those “explicit confounders” that experts can manually identify and process such as item’s position in the ranking list, there are also many “latent confounders” that are beyond the imagination of experts. For example, users’ rating on a song may depend on their current mood or the current weather, and users’ preference on ice creams may depend on the air temperature. Such latent confounders may be unobservable in the recorded training data. To solve the problem, we propose Deconfounded Causal Collaborative Filtering (DCCF). We first frame user behaviors with unobserved confounders into a causal graph, and then we design a front-door adjustment model carefully fused with machine learning to deconfound the influence of unobserved confounders. Experiments on real-world datasets show that our method is able to deconfound unobserved confounders to achieve better recommendation performance.
more »
« less
This content will become publicly available on December 4, 2026
Differentiable Cyclic Causal Discovery Under Unmeasured Confounders
Understanding causal relationships between variables is fundamental across scientific disciplines. Most causal discovery algorithms rely on two key assump- tions: (i) all variables are observed, and (ii) the underlying causal graph is acyclic. While these assumptions simplify theoretical analysis, they are often violated in real-world systems, such as biological networks. Existing methods that account for confounders either assume linearity or struggle with scalability. To address these limitations, we propose DCCD-CONF, a novel framework for differentiable learning of nonlinear cyclic causal graphs in the presence of unmeasured confounders using interventional data. Our approach alternates between optimizing the graph structure and estimating the confounder distribution by maximizing the log-likelihood of the data. Through experiments on synthetic data and real-world gene perturbation datasets, we show that DCCD-CONF outperforms state-of-the-art methods in both causal graph recovery and confounder identification. Additionally, we provide consistency guarantees for our framework, reinforcing its theoretical soundness.
more »
« less
- PAR ID:
- 10655528
- Publisher / Repository:
- 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
- Date Published:
- Subject(s) / Keyword(s):
- Causal Discovery Unmeasured Confounders Differentiable methods Cyclic Structures
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Causal inference from observational data has attracted considerable attention among researchers. One main obstacle is the handling of confounders. As direct measurement of confounders may not be feasible, recent methods seek to address the confounding bias via proxy variables, i.e., covariates postulated to be conducive to the inference of latent confounders. However, the selected proxies may scramble both confounders and post-treatment variables in practice, which risks biasing the estimation by controlling for variables affected by the treatment. In this paper, we systematically investigate the bias due to latent post-treatment variables, i.e., latent post-treatment bias, in causal effect estimation. Specifically, we first derive the bias when selected proxies scramble both latent confounders and post-treatment variables, which we demonstrate can be arbitrarily bad. We then propose a Confounder-identifiable VAE (CiVAE) to address the bias. Based on a mild assumption that the prior of latent variables that generate the proxy belongs to a general exponential family with at least one invertible sufficient statistic in the factorized part, CiVAE individually identifies latent confounders and latent post-treatment variables up to bijective transformations. We then prove that with individual identification, the intractable disentanglement problem of latent confounders and post-treatment variables can be transformed into a tractable independence test problem despite arbitrary dependence may exist among them. Finally, we prove that the true causal effects can be unbiasedly estimated with transformed confounders inferred by CiVAE. Experiments on both simulated and real-world datasets demonstrate significantly improved robustness of CiVAE.more » « less
-
Abstract Many real-world decision-making tasks require learning causal relationships between a set of variables. Traditional causal discovery methods, however, require that all variables are observed, which is often not feasible in practical scenarios. Without additional assumptions about the unobserved variables, it is not possible to recover any causal relationships from observational data. Fortunately, in many applied settings, additional structure among the confounders can be expected. In particular, pervasive confounding is commonly encountered and has been utilised for consistent causal estimation in linear causal models. In this article, we present a provably consistent method to estimate causal relationships in the nonlinear, pervasive confounding setting. The core of our procedure relies on the ability to estimate the confounding variation through a simple spectral decomposition of the observed data matrix. We derive a DAG score function based on this insight, prove its consistency in recovering a correct ordering of the DAG, and empirically compare it to previous approaches. We demonstrate improved performance on both simulated and real datasets by explicitly accounting for both confounders and nonlinear effects.more » « less
-
A key question in many network studies is whether the observed correlations between units are primarily due to contagion or latent confounding. Here, we study this question using a segregated graph (Shpitser, 2015) representation of these mechanisms, and examine how uncertainty about the true underlying mechanism impacts downstream computation of network causal effects, particularly under full interference---settings where we only have a single realization of a network and each unit may depend on any other unit in the network. Under certain assumptions about asymptotic growth of the network, we derive likelihood ratio tests that can be used to identify whether different sets of variables---confounders, treatments, and outcomes---across units exhibit dependence due to contagion or latent confounding. We then propose network causal effect estimation strategies that provide unbiased and consistent estimates if the dependence mechanisms are either known or correctly inferred using our proposed tests. Together, the proposed methods allow network effect estimation in a wider range of full interference scenarios that have not been considered in prior work. We evaluate the effectiveness of our methods with synthetic data and the validity of our assumptions using real-world networks.more » « less
-
Learning causal structure from observational data has attracted much attention,and it is notoriously challenging to find the underlying structure in the presenceof confounders (hidden direct common causes of two variables). In this paper,by properly leveraging the non-Gaussianity of the data, we propose to estimatethe structure over latent variables with the so-called Triad constraints: we design a form of "pseudo-residual" from three variables, and show that when causal relations are linear and noise terms are non-Gaussian, the causal direction between the latent variables for the three observed variables is identifiable by checking a certain kind of independence relationship. In other words, the Triad constraints help us to locate latent confounders and determine the causal direction between them. This goes far beyond the Tetrad constraints and reveals more information about the underlying structure from non-Gaussian data. Finally, based on the Triad constraints, we develop a two-step algorithm to learn the causal structure corresponding to measurement models. Experimental results on both synthetic and real data demonstrate the effectiveness and reliability of our method.more » « less
An official website of the United States government
