skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2026

Title: Revealing species responses to environmental change through long‐term data and mechanistic frameworks
Abstract Research Highlight:Dri, G. F., Bogdziewicz, M., Hunter, M., Witham, J., & Mortelliti, A. (2025). Coupled effects of forest growth and climate change on small mammal abundance and body weight: Results of a 39‐year field study.Journal of Animal Ecology.https://doi.org/10.1111/1365‐2656.70114. Biodiversity is declining due to global environmental change, yet it remains challenging to assess how specific drivers, such as climate change, affect the dynamics and trends of individual species. While many studies correlate climate variables with species abundance or occurrence, few explicitly link environmental drivers to demographic processes to uncover the mechanisms behind population trends. Such insight requires long‐term data capable of revealing slow‐moving, nonlinear trends and disentangling natural variability from directional change. In a 39‐year study, Dri et al. (2025) demonstrate the power of sustained observation and mechanistic approaches by linking climate warming and forest maturation to increased acorn production, which enhanced body condition and survival in white‐footed mice, ultimately driving population increases. Their findings underscore the importance of long‐term data for identifying meaningful ecological trends and tracing the causal pathways by which biodiversity changes. Effective conservation under global change depends on two key shifts: greater investment in long‐term biodiversity monitoring and broader adoption of frameworks that explicitly connect environmental drivers to demographic responses. Together, these approaches provide the foundation for adaptive, evidence‐based conservation strategies in a rapidly changing world.  more » « less
Award ID(s):
2213565 1954406
PAR ID:
10655757
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
94
Issue:
11
ISSN:
0021-8790
Page Range / eLocation ID:
2155 to 2158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Research Highlight:Hoenle, P. O., Staab, M., Donoso, D. A., Argoti, A., & Blüthgen, N. (2023). Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest.Journal of Animal Ecology,https://doi.org/10.1111/1365‐2656.13896. Space, time and abiotic variation are primary axes across investigations of community ecology and disturbed ecosystems offer tractable systems for assessing their relative impact. While recovering forests can act as isolated case studies in understanding community assembly, it is not well understood how individual microhabitats respond to recovery and ultimately shape community attributes. Hoenle et al. (2023) leverage the ubiquity and microhabitat‐specific diversity of ants across a gradient from active agricultural sites to old‐growth forest and assess how recovery and stratification together shape communities. The authors find distinct stratification across phylogenetic, functional and trait diversity as forest recovery time increases, while also recovering unique recovery trajectories contingent on trait sampling. While stratified, phylogenetic and functional diversity did not increase along this recovery gradient. Ten out of 13 sampled traits were jointly influenced by both stratification and recovery time. In contrast to intuitive predictions, a majority of trait means converged throughout the recovery period. Results highlight the multifaceted nature of recovery‐based community assembly and the capacity of multidimensional sampling to uncover surprising patterns in ecologically diverse lineages. 
    more » « less
  2. Abstract In 2020, Arizonans approved Proposition 207, the Smart and Safe Arizona Act, which legalized recreational marijuana sales. Previous research has typically used non‐spatial survey data to understand marijuana legalization voting patterns. However, voting behavior can, in part, be shaped by geographic context, or place, which is unaccounted for in aspatial survey data. We use multiscale geographically weighted regression to analyze how place shaped Proposition 207 voting behavior, independently of demographic variations across space. We find significant spatial variability in the sensitivity of voting for Proposition 207 to changes in several of the predictor variables of opposition and support for recreational marijuana legalization. We argue that local statistical modeling approaches provide a more in‐depth understanding of ballot measure voting behavior than the current use of global models. Related ArticlesBranton, Regina, and Ronald J. McGauvran. 2018. “Mary Jane Rocks the Vote: The Impact of Climate Context on Support for Cannabis Initiatives.”Politics & Policy46(2): 209–32.https://doi.org/10.1111/polp.12248.Brekken, Katheryn C., and Vanessa M. Fenley. 2020. “Part of the Narrative: Generic News Frames in the U.S. Recreational Marijuana Policy Subsystem.”Politics & Policy49(1): 6–32.https://doi.org/10.1111/polp.12388.Fisk, Jonathan M., Joseph A. Vonasek, and Elvis Davis. 2018. “‘Pot'reneurial Politics: The Budgetary Highs and Lows of Recreational Marijuana Policy Innovation.”Politics & Policy46(2): 189–208.https://doi.org/10.1111/polp.12246. 
    more » « less
  3. This article is a Commentary onFernandezet al.,226: 569–582. 
    more » « less
  4. This article is a Commentary onMaset al. (2024),241: 1021–1034. 
    more » « less
  5. This article is a Commentary onCurasiet al. (2023),239: 562–575. 
    more » « less