skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 23, 2026

Title: AutoFlows: Inferring Message Flows from System Communication Traces
Not AvailableThis paper proposes a novel method for automatically inferring message flow specifications from the communication traces of a system-on-chip (SoC) design that captures messages exchanged among the components during a system execution. The inferred message flows characterize the communication and coordination of components in a system design for realizing various system functions, and they are essential for SoC validation and debugging. The proposed method relieves the burden of manual development and maintenance of such specifications on human designers. Our method also uses a new accuracy metric, acceptance ratio, to evaluate the quality of the mined specifications instead of the specification size often used in the previous work, enabling more accurate specifications to be mined. Furthermore, this paper introduces the concept of essential causalities to enhance the accuracy of the message flow mining and accelerate the mining process. The effectiveness of the proposed method is evaluated on both synthetic traces and traces generated from executing several system models in GEM5. In both cases, the proposed method achieves superior accuracies compared to a previous approach. Additionally, this paper includes some practical use cases.  more » « less
Award ID(s):
2434247
PAR ID:
10655764
Author(s) / Creator(s):
 ;  
Publisher / Repository:
IEEE
Date Published:
ISSN:
1948-3295
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Location:
San Francisco, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a novel method for automatically inferring message flow specifications from the communication traces of a system-on-chip (SoC) design that captures messages exchanged among the components during a system execution. The inferred message flows characterize the communication and coordination of components in a system design for realizing various system functions, and they are essential for SoC validation and debugging. The proposed method relieves the burden of manual development and maintenance of such specifications on human designers. Our method also uses a new accuracy metric, acceptance ratio, to evaluate the quality of the mined specifications instead of the specification size often used in the previous work, enabling more accurate specifications to be mined. Furthermore, this paper introduces the concept of essential causalities to enhance the accuracy of the message flow mining and accelerate the mining process. The effectiveness of the proposed method is evaluated on both synthetic traces and traces generated from executing several system models in GEM5. In both cases, the proposed method achieves superior accuracies compared to a previous approach. Additionally, this paper includes some practical use cases. 
    more » « less
  2. Isadora is a methodology for creating information flow specifications of hardware designs. The methodology combines information flow tracking and specification mining to produce a set of information flow properties that are suitable for use during the security validation process, and which support a better understanding of the security posture of the design. Isadora is fully automated; the user provides only the design under consideration and a testbench and need not supply a threat model nor security specifications. We evaluate Isadora on a RISC-V processor plus two designs related to SoC access control. Isadora generates security properties that align with those suggested by the Common Weakness Enumerations (CWEs), and in the case of the SoC designs, align with the properties written manually by security experts. 
    more » « less
  3. Network-on-chip (NoC) is widely used to facilitate communication between components in sophisticated system-on-chip (SoC) designs. Security of the on-chip communication is crucial because exploiting any vulnerability in shared NoC would be a goldmine for an attacker that puts the entire computing infrastructure at risk. We investigate the security strength of existing anonymous routing protocols in NoC architectures, making two pivotal contributions. Firstly, we develop and perform a machine learning (ML)-based flow correlation attack on existing anonymous routing techniques in NoC systems, revealing that they provide only packet-level anonymity. Secondly, we propose a novel, lightweight anonymous routing protocol featuring outbound traffic tunneling and traffic obfuscation. This protocol is designed to provide robust defense against ML-based flow correlation attacks, ensuring both packet-level and flow-level anonymity. Experimental evaluation using both real and synthetic traffic demonstrates that our proposed attack successfully deanonymizes state-of-the-art anonymous routing in NoC architectures with high accuracy (up to 99%) for diverse traffic patterns. It also reveals that our lightweight anonymous routing protocol can defend against ML-based attacks with minor hardware and performance overhead. 
    more » « less
  4. Due to the increasing complexity of modern hetero-geneous System-on-Chips (SoC) and the growing vulnerabilities, security risk assessment and quantification is required to measure the trustworthiness of a SoC. This paper describes a systematic approach to model the security risk of a system for malicious hardware attacks. The proposed method uses graph analysis to assess the impact of an attack and the Common Vulnerability Scoring System (CVSS) is used to quantify the security level of the system. To demonstrate the applicability of the proposed metric, we consider two open source SoC benchmarks with different architectures. The overall risk is calculated using the proposed metric by computing the exploitability and impact of attack on critical components of a SoC. 
    more » « less
  5. Chiplet integration using 2.5D packaging is gaining popularity nowadays which enables several interesting features like heterogeneous integration and drop-in design method. In the traditional die-by-die approach of designing a 2.5D system, each chiplet is designed independently without any knowledge of the package RDLs. In this paper, we propose a Chip-Package Co-Design flow for implementing 2.5D systems using existing commercial chip design tools. Our flow encompasses 2.5D-aware partitioning suitable for SoC design, Chip-Package Floorplanning, and post-design analysis and verification of the entire 2.5D system. We also designed our own package planners to route RDL layers on top of chiplet layers. We use an ARM Cortex-M0 SoC system to illustrate our flow and compare analysis results with a monolithic 2D implementation of the same system. We also compare two different 2.5D implementations of the same SoC system following the drop-in approach. Alongside the traditional die-by-die approach, our holistic flow enables design efficiency and flexibility with accurate cross-boundary parasitic extraction and design verification. 
    more » « less