Abstract We study the ground state properties of the Hubbard model on three-leg triangular cylinders using large-scale density-matrix renormalization group simulations. At half-filling, we identify an intermediate gapless spin liquid phase, which has one gapless spin mode and algebraic spināspin correlations but exponential decay scalar chiralāchiral correlations, between a metallic phase at weak coupling and Mott insulating dimer phase at strong interaction. Upon light doping the gapless spin liquid, the system exhibits power-law charge-density-wave (CDW) correlations but short-range single-particle, spināspin, and chiralāchiral correlations. Similar to CDW correlations, the superconducting correlations also decay in power-law but oscillate in sign as a function of distance, which is consistent with the striped pair-density wave. When further doping the gapless spin liquid phase or doping the dimer order phase, another phase takes over, which has similar CDW correlations but all other correlations decay exponentially.
more »
« less
This content will become publicly available on August 13, 2026
Nodal pair density waves from a quarter-metal in crystalline graphene multilayers
Crystalline graphene heterostructures, namely, Bernal bilayer graphene (BBLG) and rhombohedral trilayer graphene (RTLG), for example, subject to perpendicular electric displacement fields, display a rich confluence of competing orders, resulting in a valley-degenerate, spin-polarized half-metal at moderate doping, and a spin- and valley-polarized (nondegenerate) quarter-metal at lower doping. Here we show that such a quarter-metal can be susceptible toward the nucleation of a unique spin- and valley-polarized superconducting ground state, accommodating odd-parity (dominantly š wave in BBLG and š wave in RTLG) interlayer Cooper pairs that break the translational symmetry, giving rise to a Kekule (in BBLG) or columnar (in RTLG) pair density wave. Due to the trigonal warping in the normal state, the superconducting ground state produces threefold rotationally symmetric isolated Fermi rings of normal fermions, which can manifest via linear in temperature scaling of the specific heat. We present scaling of the zero-temperature pairing amplitude and the transition temperature of such pair density wave in the presence of trigonally warped disconnected, annular, and simply connected Fermi rings in the normal state, subject to an effective attractive interaction within a mean-field approximation.
more »
« less
- Award ID(s):
- 2238679
- PAR ID:
- 10655781
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 112
- Issue:
- 8
- ISSN:
- 2469-9950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The interactions between charges and excitons involve complex many-body interactions at high densities. The exciton-polaron model has been adopted to understand the Fermi sea screening of charged excitons in monolayer transition metal dichalcogenides. The results provide good agreement with absorption measurements, which are dominated by dilute bright exciton responses. Here we investigate the Fermi sea dressing of spin-forbidden dark excitons in monolayer WSe2. With a Zeeman field, the valley-polarized dark excitons show distinct p-doping dependence in photoluminescence when the carriers reach a critical density. This density can be interpreted as the onset of strongly modified Fermi sea interactions and shifts with increasing exciton density. Through valley-selective excitation and dynamics measurements, we also infer an intervalley coupling between the dark trions and exciton-polarons mediated by the many-body interactions. Our results reveal the evolution of Fermi sea screening with increasing exciton density and the impacts of polaron-polaron interactions, which lay the foundation for understanding electronic correlations and many-body interactions in 2D systems.more » « less
-
We have measured the superconducting penetration depth (T ) in the heavy-fermion/intermediate-valent superconducting alloy series Ce1āxYbxCoIn5 using a transverse-field muon spin relaxation to study the effect of intermediate-valent Yb doping on Fermi-liquid renormalization. From (T ) we determine the superfluid density Ļs (T ) and find that it decreases continuously with increasing nominal Yb concentration x, i.e., with increasing intermediate valence. The temperature-dependent renormalization of the ānormalā fluid density ĻN (T ) = Ļs (0) ā Ļs (T ) in both the heavy-fermion and intermediate valence limits is proportional to the temperature-dependent renormalization of the specific heat. This indicates that the temperature-dependent Fermiliquid Landau parameters of the superconducting quasiparticles entering the two different physical quantities are the same. These results represent an important advance in understanding of both intermediate valence and heavy-fermion phenomena in superconductors.more » « less
-
Abstract A pair-density-wave (PDW) is a superconducting state with an oscillating order parameter. A microscopic mechanism that can give rise to it has been long sought but has not yet been established by any controlled calculation. Here we report a density-matrix renormalization-group (DMRG) study of an effectivet-J-Vmodel, which is equivalent to the Holstein-Hubbard model in a strong-coupling limit, on long two-, four-, and six-leg triangular cylinders. While a state with long-range PDW order is precluded in one dimension, we find strong quasi-long-range PDW order with a divergent PDW susceptibility as well as the spontaneous breaking of time-reversal and inversion symmetries. Despite the strong interactions, the underlying Fermi surfaces and electron pockets around theKand$${K}^{\prime}$$ points in the Brillouin zone can be identified. We conclude that the state is valley-polarized and that the PDW arises from intra-pocket pairing with an incommensurate center of mass momentum. In the two-leg case, the exponential decay of spin correlations and the measured central chargecāāā1 are consistent with an unusual realization of a Luther-Emery liquid.more » « less
-
Abstract We show that an interacting electronic system with a single ordinary or extended Van Hove point, which crosses the Fermi energy, is unstable against triplet superconductivity. The pairing mechanism is unconventional. There is no Cooper instability. Instead, pairing is due to the divergence of the density of states at a Van Hove point, leading to a superconducting quantum critical point at a finite detuning from the Van Hove point. The transition temperature is universally determined by the exponent governing the divergence of the density of states. Enhancing this exponent drastically increasesTc. The Cooper pair wave function has a non-monotonic momentum dependence with a steep slope near the gap nodes. In the absence of spināorbit coupling, pairing fluctuations suppress a 2espin-triplet state, but allow pairs of triplets to condense into a charge-4esinglet state at a temperature of similar order as our result.more » « less
An official website of the United States government
