skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Interannual variation in provenance performance under drought in a Great Basin rangeland
Rapid climate change poses a fundamental challenge to seed sourcing in restoration. While local provenancing is a common practice in restoration, local seeds may not survive or persist under future climate conditions. Alternative provenancing strategies, such as climate‐adjusted provenancing, that mix local seeds with non‐local seeds aim to increase the buffering capacity of restored populations. We hypothesized that seeds sourced from warmer and drier sites have higher seedling performance under drought than seeds sourced from cooler and wetter sites. We conducted a common garden experiment in a Great Basin rangeland where more frequent, severe drought events are expected to increase in the future. We sourced Bottlebrush squirreltail (Elymus elymoides[Raf.] Swezey) seeds from six locations along an aridity gradient and sowed them under three rainfall scenarios: ambient, moderate drought, and severe drought. We found strong interannual variation in seedling recruitment. In 1 year, some provenances from warmer/drier sites had high emergence and subsequent seedling survival under moderate drought. In another, emergence was low across provenances and rainfall treatments. Two provenances that survived 2 years of moderate drought had divergent seedling traits. Specifically, one had a high germination temperature optimum and high water‐use efficiency, such that it likely avoided freezing and resisted drought, while another had a low germination temperature optimum and low water‐use efficiency, such that it likely tolerated freezing and escaped drought. We highlight that understanding these differences in recruitment and stress coping strategies across provenances is important for creating climate‐adaptive seed mixes in anticipation of future climate conditions.  more » « less
Award ID(s):
2319597
PAR ID:
10655840
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Restoration Ecology
Date Published:
Journal Name:
Restoration Ecology
Volume:
33
Issue:
2
ISSN:
1061-2971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background and Aims In dryland ecosystems, conifer species are threatened by more frequent and severe droughts, which can push species beyond their physiological limits. Adequate seedling establishment will be critical for future resilience to global change. We used a common garden glasshouse experiment to determine how seedling functional trait expression and plasticity varied among seed sources in response to a gradient of water availability, focusing on a foundational dryland tree species of the western USA, Pinus monophylla. We hypothesized that the expression of growth-related seedling traits would show patterns consistent with local adaptation, given clinal variation among seed source environments. Methods We collected P. monophylla seeds from 23 sites distributed across rangewide gradients of aridity and seasonal moisture availability. A total of 3320 seedlings were propagated with four watering treatments representing progressively decreasing water availability. Above- and below-ground growth-related traits of first-year seedlings were measured. Trait values and trait plasticity, here representing the degree of variation among watering treatments, were modelled as a function of watering treatment and environmental conditions at the seed source locations (i.e. water availability, precipitation seasonality). Key Results We found that, under all treatments, seedlings from more arid climates had larger above- and below-ground biomass compared to seedlings from sites experiencing lower growing-season water limitation, even after accounting for differences in seed size. Additionally, trait plasticity in response to watering treatments was greatest for seedlings from summer-wet sites that experience periodic monsoonal rain events. Conclusions Our results show that P. monophylla seedlings respond to drought through plasticity in multiple traits, but variation in trait responses suggests that different populations are likely to respond uniquely to changes in local climate. Such trait diversity will probably influence the potential for future seedling recruitment in woodlands that are projected to experience extensive drought-related tree mortality. 
    more » « less
  2. Periodic fire enhances seedling recruitment for many plant species in historically fire-dependent ecosystems. Fire is expected to promote recruitment by generating environmental conditions that promote seedling emergence and survival. However, fire may also increase flowering and seed production. This makes it difficult to distinguish the effects of microsite conditions from seed availability in observational studies of seedling recruitment. Experiments that manipulate seed inputs across a representative range of conditions are needed to elucidate how seed availability versus microsite conditions influence post-fire seedling recruitment and plant demography. We experimentally manipulated time since fire across 36 patches of remnant tallgrass prairie distributed across 6400 ha in western Minnesota (USA). Over two years, we sowed 11,057Echinacea angustifolia(Asteraceae) seeds across 84 randomly placed transects and tracked 974 experimentally sown seedlings to evaluate how time since fire influenced seedling emergence and survival after experimentally controlling for variation in seed inputs. We also quantified six environmental variables and evaluated whether these covariates were associated with seedling emergence and survival. Fire influenced both seedling emergence and seedling survival. Seedlings emerged from approximately 1 percent of all seeds sown prior to experimental burns. Seeds sown one year after experimental burns emerged at 15 times the rate of seeds sown in the fall before burns, but emergence then declined as time since fire increased. Sowing seeds at high densities reduced rates of seedling emergence but increased overall recruitment. Increases in litter depth were associated with reduced emergence. Meanwhile, the probability that seedlings survived to late summer was greatest when they emerged 0-1 years after fire. The probability of seedling survival decreased with litter depth and increased with the local density of conspecific seedlings. Our findings experimentally support widespread predictions that fire enhances seedling recruitment by generating microsite conditions favorable for seedling emergence and survival – especially by increasing the light available to newly emerged seedlings. Nevertheless, recruitment also increased with seed inputs indicating that both seed availability and microsite conditions influence post-fire recruitment. Explicitly discriminating between seed-limitation and microsite-limitation is critical for understanding the demographic processes that influence plant population dynamics in historically fire-dependent ecosystems. 
    more » « less
  3. Summary Flower-sourced assembly of seed microbiota remains an understudied ecological process. Here, we investigated the floral transmission pathway for bacterial acquisition by developing seeds of watermelon (Citrullus lanatus). Comparison of stigma- and seed-associated bacterial communities from field-grownC. lanatusrevealed significant overlap: up to 40% of the bacterial diversity that was detected in seed was also found on stigmas. In a field pollinator exclusion experiment, honeybee visitation to flower stigmas had no significant effect on bacterial community composition in seeds. Among a collection of bacterial isolates from stigmas and seeds in the field, more than half (57%) were able to transmit to seeds after inoculation onto stigmas under laboratory conditions. Interestingly, for most bacterial strains, fruit set rates increased after floral inoculation, and in some cases even in the absence of transmission to the seed. We also found that bacterial isolates from watermelon stigmas and seeds had variable (i.e. positive or negative) effects on seed germination and seedling emergence. Our findings highlight the contribution of floral transmission to seed microbiota assembly and its consequences for plant fitness. 
    more » « less
  4. Abstract With ongoing climate change, populations are expected to exhibit shifts in demographic performance that will alter where a species can persist. This presents unique challenges for managing plant populations and may require ongoing interventions, including in situ management or introduction into new locations. However, few studies have examined how climate change may affect plant demographic performance for a suite of species, or how effective management actions could be in mitigating climate change effects. Over the course of two experiments spanning 6 yr and four sites across a latitudinal gradient in the Pacific Northwest, United States, we manipulated temperature, precipitation, and disturbance intensity, and quantified effects on the demography of eight native annual prairie species. Each year we planted seeds and monitored germination, survival, and reproduction. We found that disturbance strongly influenced demographic performance and that seven of the eight species had increasingly poor performance with warmer conditions. Across species and sites, we observed 11% recruitment (the proportion of seeds planted that survived to reproduction) following high disturbance, but just 3.9% and 2.3% under intermediate and low disturbance, respectively. Moreover, mean seed production following high disturbance was often more than tenfold greater than under intermediate and low disturbance. Importantly, most species exhibited precipitous declines in their population growth rates (λ) under warmer‐than‐ambient experimental conditions and may require more frequent disturbance intervention to sustain populations.Aristida oligantha, a C4 grass, was the only species to have λ increase with warmer conditions. These results suggest that rising temperatures may cause many native annual plant species to decline, highlighting the urgency for adaptive management practices that facilitate their restoration or introduction to newly suitable locations. Frequent and intense disturbances are critical to reduce competitors and promote native annuals’ persistence, but even such efforts may prove futile under future climate regimes. 
    more » « less
  5. Abstract Lianas are key components of tropical forests, particularly at sites with more severe dry seasons. In contrast, trees are more abundant and speciose in wetter areas. The seasonal growth advantage (SGA) hypothesis postulates that such contrasting distributions are produced by higher liana growth relative to trees during seasonal droughts. The SGA has been investigated for larger size classes (e.g., ≥5 cm diameter at 1.3 m, dbh), but rarely for seedlings. Using eight annual censuses of >12,000 seedlings of 483 tree and liana species conducted at eight 1‐ha plots spanning a strong rainfall gradient in central Panama, we evaluated whether liana seedlings had higher growth and/or survival rates than tree seedlings at sites with stronger droughts. We also tested whether an extreme El Niño drought during the study period had a more negative effect on tree compared to liana seedlings. The absolute density of liana seedlings was similar across the rainfall gradient, ranging from 0.32 individuals/m2(0.20–0.49, 95% credible interval [CI]) at the driest end of the gradient and 0.27 individuals/m2(0.13–0.51 95% CI) at the wettest end of the gradient. The relative density of liana seedlings compared to tree seedlings was higher at sites with stronger dry seasons (0.27, 0.21–0.33, 95% CI), compared to wetter sites (0.12, 0.04–0.20 95% CI), due to lower tree seedling densities at drier sites. However, liana seedlings did not grow or survive better than tree seedlings in drier sites compared to wetter sites. Tree seedlings were more negatively impacted in terms of mortality by the extreme El Niño drought than liana seedlings, with an increase in annual mortality rate of 0.013 (0.003–0.025 95% CI) compared to lianas of −0.009 (−0.028 to 0.008 95% CI), but not growth. Our results indicate that lianas do not have a SGA over trees at the seedling stage. Instead, higher survival of liana versus tree seedlings during severe droughts or differences in liana versus tree fecundity or germination across the rainfall gradient likely explain why liana seedlings have higher relative densities at drier sites. 
    more » « less