Topological relations form the backbone of qualitative spatial reasoning and, as such, play a paramount role in geographic information systems. Three decades of research have provided a proliferation of sets of qualitative topological relations in both continuous and discretized spaces, but only in continuous spaces has the concept of organizing these relations into a larger framework (called a conceptual neighborhood graph) been considered. Previous work leveraged matrix differences to derive the anisotropic scaling neighborhood for these relations. In this paper, a simulation protocol is used to derive conceptual neighborhood graphs of qualitative topological relations in Z2 for the operations of translation and isotropic scaling. It is further shown that, when aggregating raster relations into their continuous counterparts and collapsing neighborhood connections within these groups, the familiar conceptual neighborhood structures for continuous regions appear.
more »
« less
This content will become publicly available on September 1, 2026
Digital Relations in Z1: Discretized Time and Rasterized Lines
There is voluminous literature concerning the scope of topological relations that span various embedding spaces from R1 to R2, Z2 , S1 and S2 , and T2. In the case of the *1 spaces, those relations have been considered as conceptualizations of both spatial relations and temporal relations. Missing from that list are the set of digital relations that exist within Z1 , representing discretized time, discretized ordered line segments, or discretized linear features as embedding spaces. Discretized time plays an essential role in timeseries data, spatio-temporal information systems, and geo-foundation models where time is represented in layers of consecutive spatial rasters and/or spatial vector objects colloquially referred to as space–time cubes or spatio-temporal stacks. This paper explores the digital relations that exist in Z1 interpreted as a regular topological space under the digital Jordan curve model as well as a folded-over temporal interpretation of that space for use in spatio-temporal information systems and geo-foundation models. The digital Jordan curve model represents the maximum expressive power between discretized objects, making it the ideal paradigm for a decision support system model. It identifies 34 9-intersection relations in Z1 , 42 9-intersection + margin relations in Z1 , and 74 temporal relations in Z1 , utilizing the 9+-intersection, the commercial standard for spatial information systems for querying topological relations. This work creates opportunities for better spatio-temporal reasoning capacity within spatio-temporal stacks and a more direct interface with intuitive language concepts, instrumental for effective utilization of spatial tools. Three use cases are demonstrated in the discussion, representing each of the utilities of Z1 within the spatial data science community.
more »
« less
- Award ID(s):
- 2019470
- PAR ID:
- 10655880
- Publisher / Repository:
- International Journey of Geo-Information
- Date Published:
- Journal Name:
- ISPRS International Journal of Geo-Information
- Volume:
- 14
- Issue:
- 9
- ISSN:
- 2220-9964
- Page Range / eLocation ID:
- 327
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Time series forecasting with additional spatial information has attracted a tremendous amount of attention in recent research, due to its importance in various real-world applications on social studies, such as conflict prediction and pandemic forecasting. Conventional machine learning methods either consider temporal dependencies only, or treat spatial and temporal relations as two separate autoregressive models, namely, space-time autoregressive models. Such methods suffer when it comes to long-term forecasting or predictions for large-scale areas, due to the high nonlinearity and complexity of spatio-temporal data. In this paper, we propose to address these challenges using spatio-temporal graph neural networks. Empirical results on Violence Early Warning System (ViEWS) dataset and U.S. Covid-19 dataset indicate that our method significantly improved performance over the baseline approaches.more » « less
-
Named geographic entities (geo-entities for short) are the building blocks of many geographic datasets. Characterizing geo-entities is integral to various application domains, such as geo-intelligence and map comprehension, while a key challenge is to capture the spatial-varying context of an entity. We hypothesize that we shall know the characteristics of a geo-entity by its surrounding entities, similar to knowing word meanings by their linguistic context. Accordingly, we propose a novel spatial language model, SpaBERT, which provides a general-purpose geo-entity representation based on neighboring entities in geospatial data. SpaBERT extends BERT to capture linearized spatial context, while incorporating a spatial coordinate embedding mechanism to preserve spatial relations of entities in the 2-dimensional space. SpaBERT is pretrained with masked language modeling and masked entity prediction tasks to learn spatial dependencies. We apply SpaBERT to two downstream tasks: geo-entity typing and geo-entity linking. Compared with the existing language models that do not use spatial context, SpaBERT shows significant performance improvement on both tasks. We also analyze the entity representation from SpaBERT in various settings and the effect of spatial coordinate embedding.more » « less
-
Humans subconsciously engage in geospatial reasoning when reading articles. We recognize place names and their spatial relations in text and mentally associate them with their physical locations on Earth. Although pretrained language models can mimic this cognitive process using linguistic context, they do not utilize valuable geospatial information in large, widely available geographical databases, e.g., OpenStreetMap. This paper introduces GeoLM, a geospatially grounded language model that enhances the understanding of geo-entities in natural language. GeoLM leverages geo-entity mentions as anchors to connect linguistic information in text corpora with geospatial information extracted from geographical databases. GeoLM connects the two types of context through contrastive learning and masked language modeling. It also incorporates a spatial coordinate embedding mechanism to encode distance and direction relations to capture geospatial context. In the experiment, we demonstrate that GeoLM exhibits promising capabilities in supporting toponym recognition, toponym linking, relation extraction, and geo-entity typing, which bridge the gap between natural language processing and geospatial sciences. The code is publicly available at https://github.com/knowledge-computing/geolm.more » « less
-
One approach to understanding complex data is to study its shape through the lens of algebraic topology. While the early development of topological data analysis focused primarily on static data, in recent years, theoretical and applied studies have turned to data that varies in time. A time-varying collection of metric spaces as formed, for example, by a moving school of fish or flock of birds, can contain a vast amount of information. There is often a need to simplify or summarize the dynamic behavior. We provide an introduction to topological summaries of time-varying metric spaces including vineyards [19], crocker plots [55], and multiparameter rank functions [37]. We then introduce a new tool to summarize time-varying metric spaces: a crocker stack. Crocker stacks are convenient for visualization, amenable to machine learning, and satisfy a desirable continuity property which we prove. We demonstrate the utility of crocker stacks for a parameter identification task involving an influential model of biological aggregations [57]. Altogether, we aim to bring the broader applied mathematics community up-to-date on topological summaries of time-varying metric spaces.more » « less
An official website of the United States government
