Comparing the diversity of gut microbiota between and within social insect colonies can illustrate interactions between bacterial community composition and host behaviour. In many eusocial insect species, different workers exhibit different task behaviours. Evidence of compositional differences between core microbiota in different worker types could suggest a microbial association with the division of labour among workers. Here, we present the core microbiota ofAphaenogaster piceaant workers with different task behaviours. The genusAphaenogasteris abundant worldwide, yet the associated microbiota of this group is unstudied. Bacterial communities fromAphaenogaster piceagut samples in this study consist of 19 phyla, dominated by Proteobacteria, Cyanobacteria and Firmicutes. Analysis of 16S rRNA gene sequences reveals distinct similarity clustering ofAphaenogaster piceagut bacterial communities in workers that have more interactions with the refuse piles. Though gut bacterial communities of nurse and foraging ants are similar in overall composition and structure, the worker groups differ in relative abundances of dominant taxa. Gut bacterial communities from ants that have more interactions with refuse piles are dominated by amplicon sequence variants associated with Entomoplasmataceae. Interaction with faecal matter via refuse piles seems to have the greatest impact on microbial taxa distribution, and this effect appears to be independent of worker type. This is the first report surveying the gut microbiome community composition ofAphaenogasterants.
more »
« less
Social Microbial Transmission in a Solitary Mammal
ABSTRACT Microbial transmission is hypothesised to be a major benefit of sociality, facilitated by affiliative behaviours such as grooming and communal nesting in group‐living animals. Whether microbial transmission is also present in animals that do not form groups because territoriality limits interactions and prevents group formation remains unknown. Here, we investigate relationships among gut microbiota, population density and dynamic behavioural and spatial measures of territoriality in wild North American red squirrels (Tamiasciurus hudsonicus). Periods of high population density predicted population‐level gut microbial homogeneity but individual‐level diversification, alongside changes in obligately anaerobic, non‐sporulating taxa indicative of social transmission. Microbial alpha‐diversity increased with more frequent territorial intrusions, and pairs with stronger intrusion‐based social associations had more similar gut microbiota. As some of the first evidence for social microbial transmission in a solitary system, our findings suggest that fluctuations in density and territorial behaviours can homogenise and diversify host microbiomes among otherwise non‐interacting animals.
more »
« less
- PAR ID:
- 10655892
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 28
- Issue:
- 8
- ISSN:
- 1461-023X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Microbial environmental transmission among individuals plays an important role in shaping the microbiomes of many species. Despite the importance of the microbiome for host fitness, empirical investigations on environmental transmission are scarce, particularly in systems where interactions across multiple trophic levels influence symbiotic dynamics. Here, we explore microbial transmission within insect microbiomes, focusing on solitary bees. Specifically, we investigate the environmental transmission hypothesis, which posits that solitary bees acquire and deposit their associated microbiota from and to their surroundings, especially flowers. Using experimental setups, we examine the transmission dynamics ofApilactobacillus micheneri, a fructophilic and acidophilic bacterium, between the solitary beeOsmia lignaria(Megachilidae) and the plantPhacelia tanacetifolia(Boraginaceae). Our results demonstrate that bees not only acquire bacteria from flowers but also deposit these microbes onto uninoculated flowers for other bees to acquire them, supporting a bidirectional microbial exchange. We therefore find empirical support for the environmental transmission hypothesis, and we discuss the multitrophic dependencies that facilitate microbial transmission between bees and flowers.more » « less
-
ABSTRACT ObjectivesMost human brains exhibit left hemisphere asymmetry for planum temporale (PT) surface area and gray matter volume, which is interpreted as cerebral lateralization for language. Once considered a uniquely human feature, PT asymmetries have now been documented in chimpanzees and olive baboons. The goal of the current study was to further investigate the evolution of PT asymmetries in nonhuman primates. Materials and MethodsWe measured PT surface area in chimpanzees (Pan troglodytes,n = 90), bonobos (Pan paniscus,n = 21), gorillas (Gorilla gorilla,n = 34), orangutans (Pongospp.,n = 33), olive baboons (Papio anubis,n = 105), rhesus macaques (Macaca mulatta,n = 144), and tufted capuchins (Sapajus apella,n = 29) from magnetic resonance imaging scans. ResultsOur findings reveal significant leftward biases in PT surface area among chimpanzees, gorillas, olive baboons, rhesus macaques, and capuchins. We did not find significant population‐level asymmetries among orangutans and bonobos, which could be due, in part, to small sample sizes. We also detected significant age effects for rhesus macaques only, and no significant sex effects for any species. DiscussionThe observation of a population‐level leftward bias for PT surface area among not only hominids (chimpanzees and gorillas), but also two cercopithecoids (olive baboons and rhesus macaques) and one platyrrhine (tufted capuchins) suggests that PT lateralization was likely present in some early anthropoid primate ancestors and relatives. This provides further evidence that human brains have since undergone changes to the size and connectivity of the PT in response to selection for the cognitive processes needed to support the evolution of language and speech.more » « less
-
Stochastic Fluctuations of the Facultative Endosymbiont Wolbachia due to Finite Host Population SizeABSTRACT Many insects and other animals host heritable endosymbionts that alter host fitness and reproduction. The prevalence of facultative endosymbionts can fluctuate in host populations across time and geography for reasons that are poorly understood. This is particularly true for maternally transmittedWolbachiabacteria, which infect roughly half of all insect species. For instance, the frequencies of severalwMel‐likeWolbachia, includingwMel in hostDrosophila melanogaster, fluctuate over time in certain host populations, but the specific conditions that generate temporal variation inWolbachiaprevalence are unresolved. We implemented a discrete generation model in the new R packagesymbiontmodelerto evaluate how finite‐population stochasticity contributes toWolbachiafluctuations over time in simulated host populations under a variety of conditions. Using empirical estimates from naturalWolbachia‐Drosophilasystems, we explored how stochasticity is determined by a broad range of factors, including host population size, maternal transmission rates, andWolbachiaeffects on host fitness (modeled as fecundity) and reproduction (cytoplasmic incompatibility; CI). While stochasticity generally increases when host fitness benefits and CI are relaxed, we found that a decline in the maternal transmission rate had the strongest relative impact on increasing the size of fluctuations. We infer that non‐ or weak‐CI‐causing strains likewMel, which often show evidence of imperfect maternal transmission, tend to generate larger stochastic fluctuations compared to strains that cause strong CI, likewRi inD. simulans. Additional factors, such as fluctuating host fitness effects, are required to explain the largest examples of temporal variation inWolbachia. The conditions we simulate here usingsymbiontmodelerserve as a jumping‐off point for understanding drivers of temporal and spatial variation in the prevalence ofWolbachia, the most common endosymbionts found in nature.more » « less
-
Abstract Microbial networks offer critical insights into community structure, ecological interactions and host–microbe dynamics. However, constructing reliable microbiome networks remains challenging due to variability among existing inference methods, limited overlap between inferred networks and the absence of a gold standard (a universally accepted reference for benchmarking) for validation.We developedCMiNet, an R package and interactive Shiny App(https://cminet.wid.wisc.edu) that enables consensus microbiome network construction by integrating up to 10 widely used inference algorithms.CMiNetsupports both correlation‐based and conditional dependence‐based methods and provides users with flexible options to construct individual or consensus networks across different approaches.CMiNetintegrates results from multiple inference methods through a voting strategy that retains edges supported by a user‐defined number of methods. To assess robustness, we complement this with a bootstrap analysis that quantifies edge stability under resampling. By jointly reporting method support and bootstrap confidence,CMiNetprovides a reproducible framework that explicitly communicates both agreement across methods and stability under perturbation.We appliedCMiNetto gut and soil microbiome datasets, constructing consensus networks that retained edges supported by multiple methods and confirmed by bootstrap reproducibility values. To identify disease‐associated taxa, we developed an integrative strategy that compared results across machine learning, differential abundance and network‐based approaches, ensuring that selected taxa were consistently recovered across methods. In the soil dataset, this analysis highlighted key taxa such asKtedonobacteria, Acidobacteriae, Vicinamibacteria, MB‐A2‐108, IgnavibacteriaandAnaerolineae, all of which were confirmed by multiple independent strategies.more » « less
An official website of the United States government

