Abstract The exceptional atmospheric conditions that have accelerated Greenland Ice Sheet mass loss in recent decades have been repeatedly recognized as a possible dynamical response to Arctic amplification. Here, we present evidence of two potentially synergistic mechanisms linking high-latitude warming to the observed increase in Greenland blocking. Consistent with a prominent hypothesis associating Arctic amplification and persistent weather extremes, we show that the summer atmospheric circulation over the North Atlantic has become wavier and link this wavier flow to more prevalent Greenland blocking. While a concomitant decline in terrestrial snow cover has likely contributed to this mechanism by further amplifying warming at high latitudes, we also show that there is a direct stationary Rossby wave response to low spring North American snow cover that enforces an anomalous anticyclone over Greenland, thus helping to anchor the ridge over Greenland in this wavier atmospheric state.
more »
« less
This content will become publicly available on October 6, 2026
Estimating the Thermodynamic Contribution to Recent Greenland Ice Sheet Surface Mass Loss
Abstract. The Greenland Ice Sheet has become the largest single frozen source of global sea level rise following a pronounced increase in meltwater runoff in recent decades. The pivotal role of anomalous anticyclonic circulation patterns in facilitating this increase has been widely documented; however, this change in atmospheric circulation has coincided with a rapidly warming Arctic. While amplified warming at high latitudes has undoubtedly contributed to trends in Greenland's mass loss, the contribution of this shift in background conditions relative to changes in regional circulation patterns has yet to be quantified. Here, we apply the pseudo-global warming method of dynamical downscaling to estimate the contribution of the change in the thermodynamic background state under global warming to observed Greenland Ice Sheet surface mass loss since the turn of the century. Our analysis demonstrates that, had the recent atmospheric dynamical forcing of the Greenland Ice Sheet occurred under a preindustrial setting, anomalous surface mass loss would have been reduced by over 62 % relative to observations. We show that the change in the thermodynamic environment under amplified Arctic warming has augmented melt of the ice sheet via longwave radiative effects accompanying an increase in atmospheric water vapor content. Furthermore, the thermodynamic contribution to surface mass loss over the exceptional melt years of 2012 and 2019 was less than half that of the long-term average, demonstrating a reduced influence during periods of strong synoptic-scale atmospheric forcing.
more »
« less
- Award ID(s):
- 1901603
- PAR ID:
- 10655911
- Publisher / Repository:
- EGU
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Rapid ice loss from the Greenland ice sheet since 1992 is due in equal parts to increased surface melting and accelerated ice flow. The latter is conventionally attributed to ocean warming, which has enhanced submarine melting of the fronts of Greenland’s marine-terminating glaciers. Yet, through the release of ice sheet surface meltwater into the ocean, which excites near-glacier ocean circulation and in turn the transfer of heat from ocean to ice, a warming atmosphere can increase submarine melting even in the absence of ocean warming. The relative importance of atmospheric and oceanic warming in driving increased submarine melting has, however, not been quantified. Here, we reconstruct the rate of submarine melting at Greenland’s marine-terminating glaciers from 1979 to 2018 and estimate the resulting dynamic mass loss. We show that in south Greenland, variability in submarine melting was indeed governed by the ocean, but, in contrast, the atmosphere dominated in the northwest. At the ice sheet scale, the atmosphere plays a first-order role in controlling submarine melting and the subsequent dynamic mass loss. Our results challenge the attribution of dynamic mass loss to ocean warming alone and show that a warming atmosphere has amplified the impact of the ocean on the Greenland ice sheet.more » « less
-
Abstract Arctic amplification has been attributed predominantly to a positive lapse rate feedback in winter, when boundary layer temperature inversions focus warming near the surface. Predicting high-latitude climate change effectively thus requires identifying the local and remote physical processes that set the Arctic’s vertical warming structure. In this study, we analyze output from the CESM Large Ensemble’s twenty-first-century climate change projection to diagnose the relative influence of two Arctic heating sources, local sea ice loss and remote changes in atmospheric heat transport. Causal effects are quantified with a statistical inference method, allowing us to assess the energetic pathways mediating the Arctic temperature response and the role of internal variability across the ensemble. We find that a step-increase in latent heat flux convergence causes Arctic lower-tropospheric warming in all seasons, while additionally reducing net longwave cooling at the surface. However, these effects only lead to small and short-lived changes in boundary layer inversion strength. By contrast, a step-decrease in sea ice extent in the melt season causes, in fall and winter, surface-amplified warming and weakened boundary layer temperature inversions. Sea ice loss also enhances surface turbulent heat fluxes and cloud-driven condensational heating, which mediate the atmospheric temperature response. While the aggregate effect of many moist transport events and seasons of sea ice loss will be different than the response to hypothetical perturbations, our results nonetheless highlight the mechanisms that alter the Arctic temperature inversion in response to CO2forcing. As sea ice declines, the atmosphere’s boundary layer temperature structure is weakened, static stability decreases, and a thermodynamic coupling emerges between the Arctic surface and the overlying troposphere.more » « less
-
Abstract. Changes in ocean temperature and salinity are expected to be an important determinant of the Greenland ice sheet's future sea level contribution. Yet, simulating the impact of these changes in continental-scale ice sheet models remains challenging due to the small scale of key physics, such as fjord circulation and plume dynamics, and poor understanding of critical processes, such as calving and submarine melting. Here we present the ocean forcing strategy for Greenland ice sheet models taking part in the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), the primary community effort to provide 21st century sea level projections for the Intergovernmental Panel on Climate Change Sixth Assessment Report. Beginning from global atmosphere–ocean general circulation models, we describe two complementary approaches to provide ocean boundary conditions for Greenland ice sheet models, termed the “retreat” and “submarine melt” implementations. The retreat implementation parameterises glacier retreat as a function of projected subglacial discharge and ocean thermal forcing, is designed to be implementable by all ice sheet models and results in retreat of around 1 and 15 km by 2100 in RCP2.6 and 8.5 scenarios, respectively. The submarine melt implementation provides estimated submarine melting only, leaving the ice sheet model to solve for the resulting calving and glacier retreat and suggests submarine melt rates will change little under RCP2.6 but will approximately triple by 2100 under RCP8.5. Both implementations have necessarily made use of simplifying assumptions and poorly constrained parameterisations and, as such, further research on submarine melting, calving and fjord–shelf exchange should remain a priority. Nevertheless, the presented framework will allow an ensemble of Greenland ice sheet models to be systematically and consistently forced by the ocean for the first time and should result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.more » « less
-
Abstract Mass loss of the Greenland Ice Sheet (GrIS) plays a major role in the global sea level rise. The west coast of the GrIS has contributed 1,000 Gt of the 4,488 Gt GrIS mass loss between 2002 and 2021, making it a hotspot for GrIS mass loss. Surface melting is driven by changes in the radiative budget at the surface, which are modulated by clouds. Previous works have shown the impact of North Atlantic transport for influencing cloudiness over the GrIS. Here we used space‐based lidar cloud profile observations to show that a polar low circulation promotes the presence of low clouds over the GrIS west coast that warm radiatively the GrIS surface during the melt season. Polar low circulation transports moisture and low clouds from the sea to the west of Greenland up over the GrIS west coast through the melt season. The concomitance of the increasing presence of low cloud in fall over the Baffin Sea due to seasonal sea‐ice retreat and a maximum occurrence of Polar low circulation in September results in a maximum of low cloud fraction (∼14% at 2.5 km above sea level) over the GrIS west coast in September. These low clouds warm radiatively the GrIS west coast surface up to 80 W/m2locally. This warming contributes to an average increase of 10 W/m2of cloud surface warming in September compared to July on the GrIS west coast. Overall, this study suggests that regional atmospheric processes independent from North Atlantic transport may also influence the GrIS melt.more » « less
An official website of the United States government
