This Complete Evidence-based Practice paper will describe how three different public urban research universities designed, executed, and iterated Summer Bridge programming for a subset of incoming first-year engineering students over the course of three consecutive years. There were commonalities between each institution’s Summer Bridge, as well as unique aspects catering to the specific needs and structures of each institution. Both these commonalities and unique aspects will be discussed, in addition to the processes of iteration and improvement, target student populations, and reported student outcomes. Finally, recommendations for other institutions seeking to launch or refine similar programming will be shared. Summer Bridge programming at each of the three institutions shared certain communalities. Mostly notably, each of the three institutions developed its Summer Bridge as an additional way to provide support for students receiving an NSF S-STEM scholarship. The purpose of each Summer Bridge was to build community among these students, prepare them for the academic rigor of first-year engineering curriculum, and edify their STEM identity and sense of belonging. Each Summer Bridge was a 3-5 day experience held in the week immediately prior to the start of the Fall semester. In addition to these communalities, each Summer Bridge also had its own unique features. At the first institution, Summer Bridge is focused on increasing college readiness through the transition from summer break into impending coursework. This institution’s Summer Bridge includes STEM special-interest presentations (such as biomedical or electrical engineering) and other development activities (such as communication and growth mindset workshops). Additionally, this institution’s Summer Bridge continues into the fall semester via a 1-credit hour First Year Seminar class, which builds and reinforces student networking and community beyond the summer experience. At the second institution, all students receiving the NSF S-STEM scholarship (not only those who are first-year students) participate in Summer Bridge. This means that S-STEM scholars at this institution participate in Summer Bridge multiple years in a row. Relatedly, after the first year, Summer Bridge transitioned to a student-led and student-delivered program, affording sophomore and junior students leadership opportunities, which not only serve as marketable experience after graduation, but also further builds their sense of STEM identity and belonging. At the third institution, a special focus was given to building community. This was achieved through several means. First, each day of Summer Bridge included a unique team-oriented design challenge where students got to work together and know each other within an engineering context, also reinforcing their STEM identities. Second, students at this institution’s Summer Bridge met their future instructors in an informal, conversational, lunch setting; many students reported this was one of their favorite aspects of Summer Bridge. Finally, Summer Bridge facilitated a first connect between incoming first-year students and their peer mentors (sophomore and junior students also receiving the NSF S-STEM scholarship), with whom they would meet regularly throughout the following fall and spring semesters. Each of the three institutions employed processes of iteration and improvement for their Summer Bridge programming over the course of two or three consecutive years. Through each version and iteration of Summer Bridge, positive student outcomes are demonstrated, including direct student feedback indicating built community among students and the perception that their time spent during Summer Bridge was valuable. Based on the experiences of these three institutions, as well as research on other institutions’ Summer Bridge programming, recommendations for those seeking to launch or refine similar Summer Bridge programming will also be shared.
more »
« less
This content will become publicly available on April 15, 2026
Summer Bridge Program Influence on a Future Engineer Role Identity: A Case Study
Summer bridges have for decades proven to be effective for retention of first year students entering four-year technical degree programs, however little is known about if or how they help students develop future professional role identities. This case study investigates the effect that a summer engineering bridge program has on the future engineer role identity of a single participant. The Dynamic Systems Model of Role Identity, a holistic metatheoretical framework for motivation, engagement and learning through identity development, is used to analyze various sources of data collected before, during and after the summer bridge. Specifically, we investigate how the ontological and epistemological beliefs, purpose and goals, self-perceptions and self-definitions, and perceived-action possibilities reveal changes in one’s future engineer role identity.
more »
« less
- Award ID(s):
- 2130022
- PAR ID:
- 10655914
- Publisher / Repository:
- American Education Research Association Annual Conference 2025
- Date Published:
- Format(s):
- Medium: X
- Location:
- Denver, Colorado
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Leveraging Innovation and Optimizing Nurturing in STEM (NSF S-STEM #2130022, known locally as LION STEM Scholars) is a program developed to serve low-income undergraduate Engineering students at Penn State Berks, a regional campus of the Pennsylvania State University. As part of the program, scholars participate in a four-year comprehensive multi- tiered mentoring program and cohort experience. The LION STEM curricular program includes Engineering Ahead (a 4-week summer residential math-intensive bridge program prior to entering college), a first semester First-Year Seminar, and a second semester STEM-Persistence Seminar. Co-curricular activities focus on professional communication skills, financial literacy, career readiness, undergraduate research, and community engagement. The program seeks to accomplish four goals: (1) adapt, implement, and analyze evidence-based curricular and co- curricular activities to support, retain, and graduate a diverse set of the project's engineering scholars, (2) implement, test, and study through research and project evaluation strategies for systematically supporting student academic and career pathways in STEM, including development of STEM identity, (3) contribute to the knowledge base through investigation of the project's four-year multi-modal program so that other colleges may successfully implement similar programs, and (4) disseminate outcomes and findings related to the supports and interventions that promote student success to other institutions working to support low-income STEM students. The purpose of this paper is to analyze data from a repeated-measures design to provide a holistic narrative about the effects that the academic and support activities offered to LION STEM Scholars have on the development of their future-engineer role identity throughout their first year as an undergraduate engineering student. This paper presents data collected from semi- structured (Smith & Osborn, 2007) audio-recorded interviews from the first cohort of LION STEM Scholars (n=7) at three different time points (pre-summer bridge, post-summer bridge, end of first semester) as well as data collected from a written survey at the end of scholars’ second semester.more » « less
-
Measures of subject-related role identities in physics and math have been developed from research on the underlying constructs of identity in science education. The items for these measures capture three constructs of identity: students’ interest in the subject, students’ feeling of recognition by others, and students’ beliefs about their performance/competence in the subject area. In prior studies with late secondary and early post-secondary students, participants did not distinguish between performance beliefs (e.g., believing that they can do well in a particular subject) and competence beliefs (e.g., believing that they can understand a particular subject); therefore, performance/competence beliefs are measured as a single construct. These validated measures have been successful in predicting STEM career choices including physics, math, and engineering. Based on these measures of identity, literature on engineering identity, and my prior work on understanding engineering choice and belongingness through students’ science and math identities at the transition from high school to college, I developed a set of new engineering identity measures that capture and overall identification as an engineer, future engineering career identification, and students’ engineering-related interest, recognition, and performance/competence beliefs. I conducted a pilot survey of 371 first-year engineering students at three institutions within the U.S. during the spring semester of 2015. An exploratory factor analysis (EFA) was performed to examine the underlying structure of the piloted questions about students’ engineering identity. The measures loaded on three separate constructs that were consistent with the hypothesized constructs of interest, performance/competence and recognition. The developed items were used in a subsequent study deployed in the fall semester of 2015 that measured more than 2500 first-year engineering students’ attitudes and beliefs at four institutions within the U.S. The data on engineering identity measures from this second survey were analyzed using confirmatory factor analysis (CFA). The results indicated that the developed measures do extract a significant portion of the average variance in the latent constructs and the internal consistency of the measures (Cronbach’s α) falls within the acceptable and better range. The development of these items provides ways for engineering education researchers to more deeply explore the underlying self-beliefs in students’ engineering identity formation through quantitative measures with strong evidence for validity.more » « less
-
The purpose of this research full paper is to examine the development of undergraduate students’ research identity during a summer undergraduate research experience. Identity development through socialization experiences is crucial for students to explore future career paths, especially in careers that require research-focused graduate degrees. However, literature is limited on how effective socialization occurs for research and future research-related careers. This paper follows 10 undergraduate engineering and physics students participating in an engineering-focused Research Experiences for Undergraduates (REU) program at an R1 institution to explore this gap in knowledge. As part of a longitudinal multi-method study, participants completed a pre- and post-experience survey, and participated in three interviews over the course of the summer. Survey data were analyzed using descriptive statistics and a Wilcoxon signed-rank test. Interviews were analyzed through the lens of academic self-concept theory for common themes of socialization and identity development in research through the course of the program. Findings indicate that undergraduate students’ research self-concepts are heavily influenced by research experiences and comparisons to their peers. The students’ increase in research self-concept as well as their experiences and interactions within the program allowed them to see research careers as attainable and increased their interest in pursuing graduate degrees after the program. Survey data showed a statistical increase in research self-efficacy and research identity at the end of the program, reinforcing the idea that students’ experiences in the REU helped them grow as researchers and engineers. This research increases our understanding of students’ research identity development and provides potential ways to implement research self-concept and identity development to similar undergraduate research experiences.more » « less
-
Identity, or how people choose to define themselves, is gaining traction as an explanation for who pursues and persists in engineering. A number of quantitative studies have developed scales for predicting engineering identity in undergraduate students. However, the outcome measure of identity is sometimes based on a single item. In this paper, we present the results of a new two-item scale. The scale is adapted from an existing measure of identification with an organization that was developed by Bergami and Bagozzi [1] and refined by Bartel [2]. The measure focuses on the “cognitive (i.e., self-categorization) component of identification” (p. 556), and has been found to have high convergent validity with another, rigorous measure of identification with an organization or other entity created by Mael and Ashforth [3]. This measure utilizes one primarily visual and one verbal item to assess the extent to which an individual cognitively categorizes himself or herself as an engineer. The scale was administered to 1528 engineering undergraduate students during the 2016-2017 academic year. Internal consistency of the new engineering identity scale, as measured by Cronbach’s alpha, is 0.84. This new scale is an important step toward refining quantitative measures of, and the study of, engineering identity development in undergraduate students and other populations.more » « less
An official website of the United States government
