Because current construction activities are safety-critical and physically demanding, the incorporation of such autonomous technologies as robots and drones via worker–robot teaming has drawn interest from researchers and practitioners alike. However, this teaming relationship may impose additional safety concerns for future jobsites due to workers’ inappropriate trust—overtrust and/or distrust—in robots. The literature has highlighted that trust is a complicated and dynamic concept that fluctuates over time, highlighting the need to continuously understand workers’ trust levels in real-time by collecting and interpreting workers’ psychophysiological signals. Consequently, deep learning (DL) has been deployed in various projects to identify trust-related psychophysiological patterns and to predict trust. However, current implementations suffer from three limitations: (1) focusing only on static settings, (2) manually extracting features, and (3) disregarding the trust continuum. Therefore, this study presents a DL model that automatically extracts important features from multiple psychophysiological signals and predicts workers’ increasing or decreasing trust within such dynamic workplaces as construction sites. The developed model can achieve accuracy, recall, precision, and 𝐹1 score all above 70%. This study also provides insights into a cost-effective strategy to prioritize data with high importance to trust prediction. Thus, the primary innovations of this research are (1) the consideration of the dynamic nature of construction sites, variability among workers, and trust continuum during model development; and (2) how pivotal knowledge about workers’ real-time trust can be harnessed to facilitate the development of human-centered robots in the future.
more »
« less
This content will become publicly available on April 1, 2026
Impacts of Physical and Informational Failures on Worker–Autonomy Trust in Future Construction
Autonomous agents are increasingly becoming construction workers’ teammates, making them an integral part of tomorrow’s construction industry. Although many expect that worker–autonomy teaming will enhance construction efficiency, the presence of auto-agents, or robots necessitates an appropriate level of trust-building between workers and their autonomous counterparts, especially because these auto-agents’ perfection still cannot be guaranteed. Although researchers have widely explored human–autonomy trust in various domains—such as manufacturing and the military—discussion of this teaming dynamic within the construction sector is still nascent. To address this gap, this paper simulated a futuristic bricklaying task to (1) examine whether identifying autonomous agents’ physical and informational failures and risk perception affect workers’ trust levels, and (2) investigate workers’ neuropsychophysiological responses as a measure of trust levels toward robots, especially when autonomous agents are faulty. Results indicate that (1) identification of both types of failures and high-risk perception significantly reduce workers’ trust in autonomous agents, and the nuances of workers’ responses to both types of failures were discerned; and (2) brain activation correlates with trust changes. The findings suggest that workers’ unfamiliarity with autonomous technologies, coupled with fast-growing interest in adopting them, may leave workers at risk of improper trust transfer or overtrust in the autonomous agents. This study contributes to an expanding exploration of worker–autonomy trust in construction and calls for further investigations into effective approaches for auto-agents to communicate their physical and informational failures and to help workers recover and repair trust.
more »
« less
- Award ID(s):
- 2128970
- PAR ID:
- 10656040
- Publisher / Repository:
- ASCE
- Date Published:
- Journal Name:
- Journal of Construction Engineering and Management
- Volume:
- 151
- Issue:
- 4
- ISSN:
- 0733-9364
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the construction sector primed to incorporate such advanced technologies as artificial intelligence (AI), robots, and machines, these advanced tools will require a deep understanding of human–robot trust dynamics to support safety and productivity. Although other disciplines have broadly investigated human trust-building with robots, the discussion within the construction domain is still nascent, raising concerns because construction workers are increasingly expected to work alongside robots or cobots, and to communicate and interact with drones. Without a better understanding of how construction workers can appropriately develop and calibrate their trust in their robotic counterparts, the implementation of advanced technologies may raise safety and productivity issues within these already-hazardous jobsites. Consequently, this study conducted a systematic review of the human–robot trust literature to (1) understand human–robot trust-building in construction and other domains; and (2) establish a roadmap for investigating and fostering worker–robot trust in the construction industry. The proposed worker–robot trust-building roadmap includes three phases: static trust based on the factors related to workers, robots, and construction sites; dynamic trust understood via measuring, modeling, and interpreting real-time trust behaviors; and adaptive trust, wherein adaptive calibration strategies and adaptive training facilitate appropriate trust-building. This roadmap sheds light on a progressive procedure to uncover the appropriate trust-building between workers and robots in the construction industry.more » « less
-
Objective This work examines two human–autonomy team (HAT) training approaches that target communication and trust calibration to improve team effectiveness under degraded conditions. Background Human–autonomy teaming presents challenges to teamwork, some of which may be addressed through training. Factors vital to HAT performance include communication and calibrated trust. Method Thirty teams of three, including one confederate acting as an autonomous agent, received either entrainment-based coordination training, trust calibration training, or control training before executing a series of missions operating a simulated remotely piloted aircraft. Automation and autonomy failures simulating degraded conditions were injected during missions, and measures of team communication, trust, and task efficiency were collected. Results Teams receiving coordination training had higher communication anticipation ratios, took photos of targets faster, and overcame more autonomy failures. Although autonomy failures were introduced in all conditions, teams receiving the calibration training reported that their overall trust in the agent was more robust over time. However, they did not perform better than the control condition. Conclusions Training based on entrainment of communications, wherein introduction of timely information exchange through one team member has lasting effects throughout the team, was positively associated with improvements in HAT communications and performance under degraded conditions. Training that emphasized the shortcomings of the autonomous agent appeared to calibrate expectations and maintain trust. Applications Team training that includes an autonomous agent that models effective information exchange may positively impact team communication and coordination. Training that emphasizes the limitations of an autonomous agent may help calibrate trust.more » « less
-
Introducing robots to future construction sites will impose extra uncertainties and necessitate workers’ situational awareness (SA) of them. While previous literature has suggested that system errors, trust changes, and time pressure may affect SA, the linkage between these factors and workers’ SA in the future construction industry is understudied. Therefore, this study aimed to fill the research gap by simulating a future bricklaying worker-robot collaborative task where participants experienced robot errors and time pressure during the interaction. The results indicated that robot errors significantly impacted subjects’ trust in robots. However, under time pressure in time-critical construction tasks, workers tended to recover their reduced trust in the faulty robots (sometimes over-trust) and reduce their situational awareness. The contributions of this study lie in providing insights into the importance of SA in future jobsites and the need for investigating effective strategies for better preparing future workers.more » « less
-
While drones have exhibited considerable potential to revolutionize the construction industry, previous studies across domains have proposed that human-drone interaction could cause adverse impacts on humans (e.g., collision and discomfort). Given that construction has been recognized as a hazardous and high-stress workplace, it deserves deep exploration regarding how newly introduced drones will influence worker well-being during the interaction. However, there is a paucity of research on worker stress when communicating with drones in construction. Successful human-drone interaction must necessitate seamless and comfortable communication between workers and drones. Therefore, this study investigates the impact of physically demanding response levels on construction workers’ mental and physical well-being throughout the communication cycle. Three levels of physical responses (low, medium, and high) required for drone communication were simulated in an extended reality roofing experiment. During the communication process, real-time stress levels were assessed through participants’ electrodermal activity. The results indicated that a higher physical level of communication significantly increased workers’ higher stress levels in both the response and decoding phases. Additionally, providing drones’ feedback in verbal human-drone communication is especially important to reduce workers’ confusion and mental stress. This study highlights the critical need for worker-centric design and communication strategies in drone integration within construction.more » « less
An official website of the United States government
