Summary Plants have evolved a sophisticated immunity system for specific detection of pathogens and rapid induction of measured defences. Over‐ or constitutive activation of defences would negatively affect plant growth and development. Hence, the plant immune system is under tight positive and negative regulation. MAP kinase phosphatase1 (MKP1) has been identified as a negative regulator of plant immunity in model plantArabidopsis. However, the molecular mechanisms by which MKP1 regulates immune signalling in wheat (Triticum aestivum) are poorly understood. In this study, we investigated the role of TaMKP1 in wheat defence against two devastating fungal pathogens and determined its subcellular localization. We demonstrated that knock‐down ofTaMKP1by CRISPR/Cas9 in wheat resulted in enhanced resistance to rust caused byPuccinia striiformisf. sp.tritici(Pst) and powdery mildew caused byBlumeria graminisf. sp.tritici(Bgt), indicating thatTaMKP1negatively regulates disease resistance in wheat. Unexpectedly, whileTamkp1mutant plants showed increased resistance to the two tested fungal pathogens they also had higher yield compared with wild‐type control plants without infection. Our results suggested that TaMKP1 interacts directly with dephosphorylated and activated TaMPK3/4/6, and TaMPK4 interacts directly with TaPAL. Taken together, we demonstrated TaMKP1 exert negative modulating roles in the activation of TaMPK3/4/6, which are required for MAPK‐mediated defence signalling. This facilitates our understanding of the important roles of MAP kinase phosphatases and MAPK cascades in plant immunity and production, and provides germplasm resources for breeding for high resistance and high yield.
more »
« less
This content will become publicly available on September 3, 2026
Diverse Functions of Plant MLO Proteins: From Mystery to Elucidation
Recessive mutations in the mildew locus O (MLO) gene were first identified as key factors conferring broad-spectrum resistance to powdery mildew in barley. This discovery inspired extensive research on MLOs and novel breeding strategies for powdery mildew resistance by targetingMLOgenes in various crops. Over the past two decades, studies have revealed broader roles for MLOs beyond powdery mildew susceptibility, including regulating interactions with diverse pathogens and symbionts, root thigmomorphogenesis, and reproductive development. Recent findings identify MLOs as calcium channels, offering a unifying molecular framework for understanding their diverse biological functions. However, significant challenges remain in comprehensively understanding the cellular and molecular mechanisms underlying MLO functions. In this review, we examine the MLO-related literature to delineate the multifaceted roles of MLOs in plant immunity and development. By integrating published phylogenetic, genetic, biochemical, and molecular studies with original in silico analyses, we propose mechanistic models to contextualize the diverse functions of MLOs with a focus on plant immunity and susceptibility.
more »
« less
- PAR ID:
- 10656162
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Phytopathology
- Volume:
- 63
- Issue:
- 1
- ISSN:
- 0066-4286
- Page Range / eLocation ID:
- 147 to 173
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Study on the regulation of broad‐spectrum resistance is an active area in plant biology.RESISTANCE TO POWDERY MILDEW 8.1(RPW8.1) is one of a few broad‐spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1‐mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1‐mediated resistance inArabidopsisagainst powdery mildew. We isolated and characterizedArabidopsis b7‐6mutant. A point mutation inb7‐6at theAt5g12380locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss‐of‐function or RNA‐silencing ofAtANN8led to enhanced expression ofRPW8.1, RPW8.1‐dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over‐expression ofAtANN8compromised RPW8.1‐mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1‐triggered H2O2. In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1‐mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.more » « less
-
Abstract Flowering plant sexual reproduction relies on the communication between the pollen tube and synergid cells to induce pollen tube bursting. During this process, the MILDEW RESISTANCE LOCUS-O (MLO) protein NORTIA (NTA) is polarly trafficked from the Golgi, where it is inactive, to the filiform apparatus, where it is functional in synergids. MLOs were recently described as calcium channels and have been proposed to be negatively regulated through calmodulin (CaM) binding at a conserved C-terminal calmodulin-binding domain (CaMBD). To determine whether CaM binding is necessary for MLO function during pollen tube reception, C-terminal truncations and CaMBD point mutations were made in NTA. Point mutations were also generated in a constitutively filiform apparatus-localized chimeric NTA containing the MLO1 C-terminus. In this study, we demonstrate that mutating the MLO1 and NTA CaMBD reduces the ability for MLOs to function during pollen tube reception. This is in part due to altered subcellular localization of the CaMBD mutants in synergids. We showed that the CaMBD is not necessary for Golgi localization of MLOs, but is necessary for efficient trafficking and total protein accumulation at the filiform apparatus. Our results suggest an additional role for CaM binding as a regulator of MLO trafficking in addition to its previously proposed role as a negative regulator of MLO Ca2+ channel activity.more » « less
-
Abstract Powdery mildew fungi are obligate biotrophic pathogens that only invade plant epidermal cells. There are two epidermal surfaces in every plant leaf: the adaxial (upper) side and the abaxial (lower) side. While both leaf surfaces can be susceptible to adapted powdery mildew fungi in many plant species, there have been observations of leaf abaxial immunity in some plant species including Arabidopsis. The genetic basis of such leaf abaxial immunity remains unknown. In this study, we tested a series of Arabidopsis mutants defective in one or more known defense pathways with the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. We found that leaf abaxial immunity was significantly compromised in mutants impaired for both the EDS1/PAD4- and PEN2/PEN3-dependent defenses. Consistently, expression of EDS1–yellow fluorescent protein and PEN2–green fluorescent protein fusions from their respective native promoters in the respective eds1-2 and pen2-1 mutant backgrounds was higher in the abaxial epidermal cells than in the adaxial epidermal cells. Altogether, our results indicate that leaf abaxial immunity against powdery mildew in Arabidopsis is at least partially due to enhanced EDS1/PAD4- and PEN2/PEN3-dependent defenses. Such transcriptionally pre-programmed defense mechanisms may underlie leaf abaxial immunity in other plant species such as hemp and may be exploited for engineering adaxial immunity against powdery mildew fungi in crop plants.more » « less
-
Abstract Nonhost resistance (NHR) refers to the immunity of most tested genotypes of a plant species to most tested variants of a pathogen species. Thus, NHR is broad spectrum and durable in nature and constitutes a major safety barrier against invasion of a myriad of potentially pathogenic microbes in any plants including domesticated crops. Genetic study of NHR is generally more difficult compared to host resistance mainly because NHR is genetically more complicated and often lacks intraspecific polymorphisms. Nevertheless, substantial progress has been made towards the understanding of the molecular basis of NHR in the past two decades using various approaches. Not surprisingly, molecular mechanisms of NHR revealed so far encompasses pathogen‐associated molecular pattern‐triggered immunity and effector‐triggered immunity. In this review, we briefly discuss the inherent difficulty in genetic studies of NHR and summarize the main approaches that have been taken to identify genes contributing to NHR. We also discuss new enabling strategies for dissecting multilayered NHR in model plants with a focus on NHR against filamentous pathogens, especially biotrophic pathogens such as powdery mildew and rust fungi.more » « less
An official website of the United States government
