skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Foundation Species Modulate Microbial Benthic–Pelagic Coupling in the Rocky Intertidal
ABSTRACT Benthic–pelagic coupling, the reciprocal exchange of materials between benthic and pelagic habitats, has traditionally emphasised pelagic influences on benthic systems. Yet, the role of benthic biological processes in shaping pelagic microbial dynamics remains underexplored. We investigated how surfgrass and mussels regulate nitrogen and dissolved organic matter (DOM) cycling and their cascading effects on heterotrophic bacteria in Oregon tide pools. We quantified biogeochemical fluxes and bacterial responses before and after foundation species removal during contrasting upwelling regimes. Mussel‐dominated pools released high concentrations of ammonium and nitrate, while surfgrass pools transformed DOM that fueled bacterial growth; upwelling intensified these benthic–pelagic linkages. Removing foundation species dampened nutrient release in mussel pools and reduced DOM‐fueled bacterial growth in surfgrass pools, ultimately decoupling benthic productivity from pelagic microbial growth. Our results demonstrate the critical role of foundation species to pelagic microbial processes and underscore the vulnerability of coastal microbial dynamics to their global decline.  more » « less
Award ID(s):
1923877 2023298
PAR ID:
10656170
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology Letters
Volume:
28
Issue:
12
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gelatinous zooplankton play a crucial role in pelagic marine food webs, however, due to methodological challenges and persistent misconceptions of their importance, the trophic role of gelatinous zooplankton remains poorly investigated. This is particularly true for small gelatinous zooplankton including the marine pelagic tunicate,Dolioletta gegenbauri.D. gegenbauriand other doliolid species occur persistently on wide subtropical shelves where they often produce massive blooms in association with shelf upwelling conditions. As efficient filter feeders and prodigious producers of relatively low‐density organic‐rich aggregates, doliolids are understood to contribute significantly to shelf production, pelagic ecology, and pelagic–benthic coupling. Utilizing molecular gut content analysis and stable isotope analysis approaches, the trophic interactions of doliolids were explored during bloom and non‐bloom conditions on the South Atlantic Bight continental shelf in the Western North Atlantic. Based on molecular gut content analysis, relative ingestion selectivity varied withD. gegenbaurilife stage. At all life stages, doliolids ingested a wide range of prey types and sizes, but exhibited selectivity for larger prey types including diatoms, ciliates, and metazoans. Experimental growth studies confirmed that metazoan prey were ingested, but indicated that they were not digested and assimilated. Stable isotopic composition (δ13C and δ15N) of wild‐caught doliolids, during bloom and non‐bloom conditions, were most consistent with a detrital‐supplemented diet. These observations suggest that the feeding ecology ofD. gegenbauriis more complex than previously reported, and have strong and unusual linkages to the microbial food web. 
    more » « less
  2. null (Ed.)
    Abstract Dissolved organic matter (DOM) is recognized for its importance in freshwater ecosystems, but historical reliance on DOM quantity rather than indicators of DOM composition has led to an incomplete understanding of DOM and an underestimation of its role and importance in biogeochemical processes. A single sample of DOM can be composed of tens of thousands of distinct molecules. Each of these unique DOM molecules has their own chemical properties and reactivity or role in the environment. Human activities can modify DOM composition and recent research has uncovered distinct DOM pools laced with human markers and footprints. Here we review how land use change, climate change, nutrient pollution, browning, wildfires, and dams can change DOM composition which in turn will affect internal processing of freshwater DOM. We then describe how human-modified DOM can affect biogeochemical processes. Drought, wildfires, cultivated land use, eutrophication, climate change driven permafrost thaw, and other human stressors can shift the composition of DOM in freshwater ecosystems increasing the relative contribution of microbial-like and aliphatic components. In contrast, increases in precipitation may shift DOM towards more relatively humic-rich, allochthonous forms of DOM. These shifts in DOM pools will likely have highly contrasting effects on carbon outgassing and burial, nutrient cycles, ecosystem metabolism, metal toxicity, and the treatments needed to produce clean drinking water. A deeper understanding of the links between the chemical properties of DOM and biogeochemical dynamics can help to address important future environmental issues, such as the transfer of organic contaminants through food webs, alterations to nitrogen cycling, impacts on drinking water quality, and biogeochemical effects of global climate change. 
    more » « less
  3. ABSTRACT Dissolved organic matter (DOM) comprises diverse compounds with variable bioavailability across aquatic ecosystems. The sources and quantities of DOM can influence microbial growth and community structure with effects on biogeochemical processes. To investigate the chemodiversity of labile DOM in tropical reef waters, we tracked microbial utilisation of over 3000 untargeted mass spectrometry ion features exuded from two coral and three algal species. Roughly half of these features clustered into over 500 biologically labile spectral subnetworks annotated to diverse structural superclasses, including benzenoids, lipids, organic acids, heterocyclics and phenylpropanoids, comprising on average one‐third of the ion richness and abundance within each chemical class. Distinct subsets of these labile compounds were exuded by algae and corals during the day and night, driving differential microbial growth and substrate utilisation. This study expands the chemical diversity of labile marine DOM with implications for carbon cycling in coastal environments. 
    more » « less
  4. Abstract Blooms of planktonic cyanobacteria have long been of concern in lakes, but more recently, harmful impacts of riverine benthic cyanobacterial mats been recognized. As yet, we know little about how various benthic cyanobacteria are distributed in river networks, or how environmental conditions or other associated microbes in their consortia affect their biosynthetic capacities. We performed metagenomic sequencing for 22 Oscillatoriales-dominated (Cyanobacteria) microbial mats collected across the Eel River network in Northern California and investigated factors associated with anatoxin-a producing cyanobacteria. All microbial communities were dominated by one or two cyanobacterial species, so the key mat metabolisms involve oxygenic photosynthesis and carbon oxidation. Only a few metabolisms fueled the growth of the mat communities, with little evidence for anaerobic metabolic pathways. We genomically defined four cyanobacterial species, all which shared <96% average nucleotide identity with reference Oscillatoriales genomes and are potentially novel species in the genus Microcoleus. One of the Microcoleus species contained the anatoxin-a biosynthesis genes, and we describe the first anatoxin-a gene cluster from the Microcoleus clade within Oscillatoriales. Occurrence of these four Microcoleus species in the watershed was correlated with total dissolved nitrogen and phosphorus concentrations, and the species that contains the anatoxin-a gene cluster was found in sites with higher nitrogen concentrations. Microbial assemblages in mat samples with the anatoxin-a gene cluster consistently had a lower abundance of Burkholderiales (Betaproteobacteria) species than did mats without the anatoxin-producing genes. The associations of water nutrient concentrations and certain co-occurring microbes with anatoxin-a producing Microcoleus motivate further exploration for their roles as potential controls on the distributions of toxigenic benthic cyanobacteria in river networks. 
    more » « less
  5. Abstract Climate‐driven warming is projected to intensify wildfires, increasing their frequency and severity globally. Wildfires are an increasingly significant source of atmospheric deposition, delivering nutrients, organic matter, and trace metals to coastal and open ocean waters. These inputs have the potential to fertilize or inhibit microbial growth, yet their ecological impacts remain poorly understood. This study examines how ash leachate, derived from the 2017 Thomas Fire in California and lab‐produced ash from Oregon vegetation, affects coastal plankton communities. Shipboard experiments off the California coast examined how pre‐existing plankton biomass concentrations mediate responses to ash leachates. We found that ash leachate contained dissolved organic matter (DOM) that significantly increased bacterioplankton specific growth rates and DOM remineralization rates but had a negligible effect on bacterioplankton growth efficiency, suggesting low DOM bioavailability. Furthermore, ash‐derived DOM had a higher potential to accumulate in high biomass water, where pre‐existing DOM substrates may better support bacterial metabolism. Ash leachate had a neutral to negative effect on phytoplankton division rates and decreased microzooplankton grazing rates, particularly in low biomass water, leading to increased phytoplankton accumulation. Nanoeukaryotes accumulated in low biomass water, whereas picoeukaryotes andSynechococcusaccumulated in high biomass water. Our findings suggest that the influence of ash deposition on DOM cycling, phytoplankton accumulation, and broader marine food web dynamics depends on pre‐existing biomass levels. Understanding these interactions is critical for predicting the biogeochemical consequences of increasing wildfire activity on marine ecosystems. 
    more » « less