This content will become publicly available on October 30, 2026
Multiscale Modeling of Enzymatic Efficiency in Multienzyme Complex: Effect of Interenzyme Distance, Crowding Effect and Side Reactions
- Award ID(s):
- 2215705
- PAR ID:
- 10656416
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry B
- Volume:
- 129
- Issue:
- 43
- ISSN:
- 1520-6106
- Page Range / eLocation ID:
- 11168 to 11182
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Instruction-tuned large language models (LLMs), such as ChatGPT, have led to promising zero-shot performance in discriminative natural language understanding (NLU) tasks. This involves querying the LLM using a prompt containing the question, and the candidate labels to choose from. The question-answering capabilities of ChatGPT arise from its pre-training on large amounts of human-written text, as well as its subsequent fine-tuning on human preferences, which motivates us to ask: Does ChatGPT also inherit humans’ cognitive biases? In this paper, we study the primacy effect of ChatGPT: the tendency of selecting the labels at earlier positions as the answer. We have two main findings: i) ChatGPT’s decision is sensitive to the order of labels in the prompt; ii) ChatGPT has a clearly higher chance to select the labels at earlier positions as the answer. We hope that our experiments and analyses provide additional insights into building more reliable ChatGPT-based solutions. We release the source code at https://github.com/wangywUST/PrimacyEffectGPT.more » « less
-
Abstract Highly crystalline thin films in organic semiconductors are important for applications in high‐performance organic optoelectronics. Here, the effect of grain boundaries on the Hall effect and charge transport properties of organic transistors based on two exemplary benchmark systems is elucidated: (1) solution‐processed blends of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) small molecule and indacenodithiophene‐benzothiadiazole (C16IDT‐BT) conjugated polymer, and (2) large‐area vacuum evaporated polycrystalline thin films of rubrene (C42H28). It is discovered that, despite the high field‐effect mobilities of up to 6 cm2V−1s−1and the evidence of a delocalized band‐like charge transport, the Hall effect in polycrystalline organic transistors is systematically and significantly underdeveloped, with the carrier coherence factor α < 1 (i.e., yields an underestimated Hall mobility and an overestimated carrier density). A model based on capacitively charged grain boundaries explaining this unusual behavior is described. This work significantly advances the understanding of magneto‐transport properties of organic semiconductor thin films.more » « less
-
Crystal symmetry plays an important role in the Hall effects. Unconventional spin Hall effect (USHE), characterized by Dresselhaus and out-of-plane spins, has been observed in materials with low crystal symmetry. Recently, antisymmetric planar Hall effect (APHE) was discovered in rutile RuO2 and IrO2 (101) thin films, which also exhibit low crystal symmetry. In this study, we report the observation of both USHE and APHE in IrO2 (111) films, using spin-torque ferromagnetic resonance and harmonic Hall measurements, respectively. Notably, the unconventional spin-torque efficiency from Dresselhaus spin was more than double that of a previous report. Additionally, the temperature dependence of APHE suggests that it arises from the Lorentz force, constrained by crystal symmetry. Symmetry analysis supports the coexistence of USHE and APHE and demonstrates that both originate from the crystal symmetry of IrO2 (111), paving the way for a deeper understanding of Hall effects and related physical phenomena.more » « less
-
Axion dark matter (DM) constitutes an oscillating background that violates parity and time-reversal symmtries. Inside piezoelectric crystals, where parity is broken spontaneously, this axion background can result in a stress. We call this new phenomenon “the piezoaxionic effect.” When the frequency of axion DM matches the natural frequency of a bulk acoustic normal mode of the piezoelectric crystal, the piezoaxionic effect is resonantly enhanced and can be read out electrically via the piezoelectric effect. We explore all axion couplings that can give rise to the piezoaxionic effect—the most promising one is the defining coupling of the QCD axion, through the anomaly of the strong sector. We also point our another, subdominant phenomenon present in all dielectrics, namely the “electroaxionic effect.” An axion background can produce an electric displacement field in a crystal which in turn will give rise to a voltage across the crystal. The electroaxionic effect is again largest for the axion coupling to gluons. We find that this model-independent coupling of the QCD axion may be probed through the combination of the piezoaxionic and electroaxionic effects in piezoelectric crystals with aligned nuclear spins, with near-future experimental setups applicable for axion masses between 10^−11 eV and 10^−7 eV, a challenging range for most other detection concepts.more » « less
An official website of the United States government
