skip to main content


Title: The pan-genome of Aspergillus fumigatus provides a high-resolution view of its population structure revealing high levels of lineage-specific diversity driven by recombination
Aspergillus fumigatus is a deadly agent of human fungal disease where virulence heterogeneity is thought to be at least partially structured by genetic variation between strains. While population genomic analyses based on reference genome alignments offer valuable insights into how gene variants are distributed across populations, these approaches fail to capture intraspecific variation in genes absent from the reference genome. Pan-genomic analyses based on de novo assemblies offer a promising alternative to reference-based genomics with the potential to address the full genetic repertoire of a species. Here, we evaluate 260 genome sequences of A . fumigatus including 62 newly sequenced strains, using a combination of population genomics, phylogenomics, and pan-genomics. Our results offer a high-resolution assessment of population structure and recombination frequency, phylogenetically structured gene presence–absence variation, evidence for metabolic specificity, and the distribution of putative antifungal resistance genes. Although A . fumigatus disperses primarily via asexual conidia, we identified extraordinarily high levels of recombination with the lowest linkage disequilibrium decay value reported for any fungal species to date. We provide evidence for 3 primary populations of A . fumigatus , with recombination occurring only rarely between populations and often within them. These 3 populations are structured by both gene variation and distinct patterns of gene presence–absence with unique suites of accessory genes present exclusively in each clade. Accessory genes displayed functional enrichment for nitrogen and carbohydrate metabolism suggesting that populations may be stratified by environmental niche specialization. Similarly, the distribution of antifungal resistance genes and resistance alleles were often structured by phylogeny. Altogether, the pan-genome of A . fumigatus represents one of the largest fungal pan-genomes reported to date including many genes unrepresented in the Af293 reference genome. These results highlight the inadequacy of relying on a single-reference genome-based approach for evaluating intraspecific variation and the power of combined genomic approaches to elucidate population structure, genetic diversity, and putative ecological drivers of clinically relevant fungi.  more » « less
Award ID(s):
2215705
NSF-PAR ID:
10464605
Author(s) / Creator(s):
; ; ;
Editor(s):
Sil, Anita
Date Published:
Journal Name:
PLOS Biology
Volume:
20
Issue:
11
ISSN:
1545-7885
Page Range / eLocation ID:
e3001890
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nowrousian, M (Ed.)
    Abstract Individuals with cystic fibrosis (CF) are susceptible to chronic lung infections that lead to inflammation and irreversible lung damage. While most respiratory infections that occur in CF are caused by bacteria, some are dominated by fungi such as the slow-growing black yeast Exophiala dermatitidis. Here, we analyze isolates of E. dermatitidis cultured from two samples, collected from a single subject 2 years apart. One isolate genome was sequenced using long-read Nanopore technology as an in-population reference to use in comparative single nucleotide polymorphism and insertion–deletion variant analyses of 23 isolates. We then used population genomics and phylo-genomics to compare the isolates to each other as well as the reference genome strain E. dermatitidis NIH/UT8656. Within the CF lung population, three E. dermatitidis clades were detected, each with varying mutation rates. Overall, the isolates were highly similar suggesting that they were recently diverged. All isolates were MAT 1-1, which was consistent with their high relatedness and the absence of evidence for mating or recombination between isolates. Phylogenetic analysis grouped sets of isolates into clades that contained isolates from both early and late time points indicating there are multiple persistent lineages. Functional assessment of variants unique to each clade identified alleles in genes that encode transporters, cytochrome P450 oxidoreductases, iron acquisition, and DNA repair processes. Consistent with the genomic heterogeneity, isolates showed some stable phenotype heterogeneity in melanin production, subtle differences in antifungal minimum inhibitory concentrations, and growth on different substrates. The persistent population heterogeneity identified in lung-derived isolates is an important factor to consider in the study of chronic fungal infections, and the analysis of changes in fungal pathogens over time may provide important insights into the physiology of black yeasts and other slow-growing fungi in vivo. 
    more » « less
  2. null (Ed.)
    Abstract Background Antibiotic-producing Streptomyces bacteria are ubiquitous in nature, yet most studies of its diversity have focused on free-living strains inhabiting diverse soil environments and those in symbiotic relationship with invertebrates. Results We studied the draft genomes of 73 Streptomyces isolates sampled from the skin (wing and tail membranes) and fur surfaces of bats collected in Arizona and New Mexico. We uncovered large genomic variation and biosynthetic potential, even among closely related strains. The isolates, which were initially identified as three distinct species based on sequence variation in the 16S rRNA locus, could be distinguished as 41 different species based on genome-wide average nucleotide identity. Of the 32 biosynthetic gene cluster (BGC) classes detected, non-ribosomal peptide synthetases, siderophores, and terpenes were present in all genomes. On average, Streptomyces genomes carried 14 distinct classes of BGCs (range = 9–20). Results also revealed large inter- and intra-species variation in gene content (single nucleotide polymorphisms, accessory genes and singletons) and BGCs, further contributing to the overall genetic diversity present in bat-associated Streptomyces . Finally, we show that genome-wide recombination has partly contributed to the large genomic variation among strains of the same species. Conclusions Our study provides an initial genomic assessment of bat-associated Streptomyces that will be critical to prioritizing those strains with the greatest ability to produce novel antibiotics. It also highlights the need to recognize within-species variation as an important factor in genetic manipulation studies, diversity estimates and drug discovery efforts in Streptomyces . 
    more » « less
  3. Hug, Laura A. (Ed.)
    ABSTRACT Natural microbial communities consist of closely related taxa that may exhibit phenotypic differences and inhabit distinct niches. However, connecting genetic diversity to ecological properties remains a challenge in microbial ecology due to the lack of pure cultures across the microbial tree of life. “ Candidatus Accumulibacter phosphatis” (Accumulibacter) is a polyphosphate-accumulating organism that contributes to the enhanced biological phosphorus removal (EBPR) biotechnological process for removing excess phosphorus from wastewater and preventing eutrophication from downstream receiving waters. Distinct Accumulibacter clades often coexist in full-scale wastewater treatment plants and laboratory-scale enrichment bioreactors and have been hypothesized to inhabit distinct ecological niches. However, since individual strains of the Accumulibacter lineage have not been isolated in pure culture to date, these predictions have been made solely on genome-based comparisons and enrichments with varying strain compositions. Here, we used genome-resolved metagenomics and metatranscriptomics to explore the activity of coexisting Accumulibacter strains in an engineered bioreactor environment. We obtained four high-quality genomes of Accumulibacter strains that were present in the bioreactor ecosystem, one of which is a completely contiguous draft genome scaffolded with long Nanopore reads. We identified core and accessory genes to investigate how gene expression patterns differed among the dominating strains. Using this approach, we were able to identify putative pathways and functions that may confer distinct functions to Accumulibacter strains and provide key functional insights into this biotechnologically significant microbial lineage. IMPORTANCE “ Candidatus Accumulibacter phosphatis” is a model polyphosphate-accumulating organism that has been studied using genome-resolved metagenomics, metatranscriptomics, and metaproteomics to understand the EBPR process. Within the Accumulibacter lineage, several similar but diverging clades are defined by the shared sequence identity of the polyphosphate kinase ( ppk1 ) locus. These clades are predicted to have key functional differences in acetate uptake rates, phage defense mechanisms, and nitrogen-cycling capabilities. However, such hypotheses have largely been made based on gene content comparisons of sequenced Accumulibacter genomes, some of which were obtained from different systems. Here, we performed time series genome-resolved metatranscriptomics to explore gene expression patterns of coexisting Accumulibacter clades in the same bioreactor ecosystem. Our work provides an approach for elucidating ecologically relevant functions based on gene expression patterns between closely related microbial populations. 
    more » « less
  4. Abstract Sage-grouse are two closely related iconic species of the North American West, with historically broad distributions across sagebrush-steppe habitat. Both species are dietary specialists on sagebrush during winter, with presumed adaptations to tolerate the high concentrations of toxic secondary metabolites that function as plant chemical defenses. Marked range contraction and declining population sizes since European settlement have motivated efforts to identify distinct population genetic variation, particularly that which might be associated with local genetic adaptation and dietary specialization of sage-grouse. We assembled a reference genome and performed whole-genome sequencing across sage-grouse from six populations, encompassing both species and including several populations on the periphery of the species ranges. Population genomic analyses reaffirmed genome-wide differentiation between greater and Gunnison sage-grouse, revealed pronounced intraspecific population structure, and highlighted important differentiation of a small isolated population of greater sage-grouse in the northwest of the range. Patterns of genome-wide differentiation were largely consistent with a hypothesized role of genetic drift due to limited gene flow among populations. Inferred ancient population demography suggested persistent declines in effective population sizes that have likely contributed to differentiation within and among species. Several genomic regions with single-nucleotide polymorphisms exhibiting extreme population differentiation were associated with candidate genes linked to metabolism of xenobiotic compounds. In vitro activity of enzymes isolated from sage-grouse livers supported a role for these genes in detoxification of sagebrush, suggesting that the observed interpopulation variation may underlie important local dietary adaptations, warranting close consideration for conservation strategies that link sage-grouse to the chemistry of local sagebrush. 
    more » « less
  5. Wolbachia is a widespread endosymbiont of insects and filarial nematodes that profoundly influences host biology. Wolbachia has also been reported in rhizosphere hosts, where its diversity and function remain poorly characterized. The discovery that plant-parasitic nematodes (PPNs) host Wolbachia strains with unknown roles is of interest evolutionarily, ecologically, and for agriculture as a potential target for developing new biological controls. The goal of this study was to screen communities for PPN endosymbionts and analyze genes and genomic patterns that might indicate their role. Genome assemblies revealed 1 out of 16 sampled sites had nematode communities hosting a Wolbachia strain, designated w Tex, that has highly diverged as one of the early supergroup L strains. Genome features, gene repertoires, and absence of known genes for cytoplasmic incompatibility, riboflavin, biotin, and other biosynthetic functions placed w Tex between mutualist C + D strains and reproductive parasite A + B strains. Functional terms enriched in group L included protoporphyrinogen IX, thiamine, lysine, fatty acid, and cellular amino acid biosynthesis, while dN/dS analysis suggested the strongest purifying selection on arginine and lysine metabolism, and vitamin B6, heme, and zinc ion binding, suggesting these as candidate roles in PPN Wolbachia . Higher dN/dS pathways between group L, w Pni from aphids, w Fol from springtails, and w CfeT from cat fleas suggested distinct functional changes characterizing these early Wolbachia host transitions. PPN Wolbachia had several putative horizontally transferred genes, including a lysine biosynthesis operon like that of the mitochondrial symbiont Midichloria , a spirochete-like thiamine synthesis operon shared only with w CfeT, an ATP/ADP carrier important in Rickettsia , and a eukaryote-like gene that may mediate plant systemic acquired resistance through the lysine-to-pipecolic acid system. The Discovery of group L-like variants from global rhizosphere databases suggests diverse PPN Wolbachia strains remain to be discovered. These findings support the hypothesis of plant-specialization as key to shaping early Wolbachia evolution and present new functional hypotheses, demonstrating promise for future genomics-based rhizosphere screens. 
    more » « less