skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 2, 2026

Title: A Batteryless Wireless Microphone Using RF Backscatter
Wireless microphones are essential tools in business, education, entertainment, and other domains. However, most existing designs rely on batteries, leading to the inconvenience of frequent recharging and the risk of unexpected power failure during use. In this paper, we present TagMic, a battery-free wireless microphone enabled by a novel radio frequency (RF) backscatter technology. TagMic is built on two key innovations.(i) Parametric backscatter tag design:This design enables the RF tag to operate at separate excitation and reflection frequencies, fundamentally mitigating the self-interference problem inherent in conventional RFID systems. Unlike harmonic backscatter approaches, it also requires a significantly lower activation voltage, resulting in a longer communication range.(ii) Voice modulation via RF coupling:A passive piezoelectric sensor is integrated with the RF tag through RF coupling to enable analog-domain frequency modulation (FM), directly encoding voice signals onto the backscattered signal. This eliminates the need for digital signal processing, allowing for truly continuous voice streaming. We have built a prototype of TagMic and evaluated it under realistic conditions. Extensive experiments demonstrate its effectiveness in achieving battery-free, continuous, and seamless wireless voice streaming in realistic applications.  more » « less
Award ID(s):
2225337
PAR ID:
10656467
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
9
Issue:
4
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Optical frequency combs, featuring evenly spaced spectral lines, have been extensively studied and applied to metrology, signal processing, and sensing. Recently, frequency comb generation has been also extended to MHz frequencies by harnessing nonlinearities in microelectromechanical membranes. However, the generation of frequency combs at radio frequencies (RF) has been less explored, together with their potential application in wireless technologies. In this work, we demonstrate an RF system able to wirelessly and passively generate frequency combs. This circuit, which we name quasi-harmonic tag (qHT), offers a battery-free solution for far-field ranging of unmanned vehicles (UVs) in GPS-denied settings, and it enables a strong immunity to multipath interference, providing better accuracy than other RF approaches to far-field ranging. Here, we discuss the principle of operation, design, implementation, and performance of qHTs used to remotely measure the azimuthal distance of a UV flying in an uncontrolled electromagnetic environment. We show that qHTs can wirelessly generate frequency combs with μWatt-levels of incident power by leveraging the nonlinear interaction between an RF parametric oscillator and a high quality factor piezoelectric microacoustic resonator. Our technique for frequency comb generation opens new avenues for a wide range of RF applications beyond ranging, including timing, computing and sensing. 
    more » « less
  2. null (Ed.)
    Backscatter communication has been a popular choice in low-power/battery-free sensor nodes development. However, the effect of RF source to receiver distance on the operating range of this communication system has not been modeled accurately. In this paper, we propose a model for a bistatic backscatter system coverage map based on the receiver selectivity, receiver sensitivity, and geometric placement of the receiver, RF source, and the tag. To verify our proposed model and simulations, we perform an experiment using a low-cost commercial BLE receiver and a custom-designed BLE backscatter tag. We also show that the receiver selectivity might depend on the interference level, and present measurement results to signify how this dependence relates the system bit error rate to the RF excitation power. 
    more » « less
  3. We present a high-speed underwater optical backscatter communication technique based on acousto-optic light steering. Our approach enables underwater assets to transmit data at rates potentially reaching hundreds of Mbps, vastly outperforming current state-of-the-art optical and underwater backscatter systems, which typically operate at only a few kbps. In our system, a base station illuminates the backscatter device with a pulsed laser and captures the retroreflected signal using an ultrafast photodetector. The backscatter device comprises a retroreflector and a 2 MHz ultrasound transducer. The transducer generates pressure waves that dynamically modulate the refractive index of the surrounding medium, steering the light either toward the photodetector (encodingbit1) or away from it (encodingbit0). Using a 3-bit redundancy scheme, our prototype achieves a communication rate of approximately 0.66 Mbps with an energy consumption of ≤ 1 μJ/bit, representing a 60× improvement over prior techniques. We validate its performance through extensive laboratory experiments in which remote underwater assets wirelessly transmit multimedia data to the base station under various environmental conditions. 
    more » « less
  4. Tag localization is crucial for many context-aware and automation applications in smart homes, retail stores, or warehouses. While custom localization technologies (e.g RFID) have the potential to support low-cost battery-free tag tracking, the cost and complexity of commissioning a space with beacons or readers has stifled adoption. In this paper, we explore how WiFi backscatter localization can be realized using the existing WiFi infrastructure already deployed for data applications. We present a new approach that leverages existing WiFi infrastructure to enable extremely low-power and accurate tag localization relative to a single scanning device. First, we adopt an ultra-low power tag design in which the tag blindly modulates ongoing WiFi packets using On-Off Keying (OOK). Then, we utilize the underlying physical properties of multipath propagation to detect the passive wireless reflection from the tag in the presence of rich multipath propagations. Finally, we localize the tag from a single receiver by forming a triangle between the tag reflection and the LoS path between the two WiFi transceivers. We implement TagFi using a customized backscatter tag and off-the-shelf WiFi chipsets. Our empirical results in a cluttered office building demonstrate that TagFi achieves a median localization accuracy of 0.2m up to 8 meters range. 
    more » « less
  5. We investigate silicon waveguides with subwavelength-scale modulation for applications in free-electron-photon interactions. The modulation enables velocity matching and efficient interactions between low-energy electrons and co-propagating photons. Specifically, we design a subwavelength-grating (SWG) waveguide for interactions between 23-keV free electrons and ≈1500-nm photons. The SWG waveguide and electron system exhibit a coupling coefficient of |gQu| = 0.23, and as we corroborate with time-domain, particle-in-cell simulations, the system operates as a backward-wave oscillator. Overall, our results show that modulated waveguides could open the door to strong, extended interactions between photons and low-energy (10-keV-scale) electrons, like those typically present in scanning electron microscopes. Additionally, our SWG waveguide design suggests that periodic waveguides could offer intriguing dispersion engineering opportunities for tailoring these interactions. 
    more » « less