For a given endpoint position, a five-bar manipu-lator may assume several separate configurations, with each offering distinct differential kinematics. The corresponding configurations are separated by output singularities and are said to belong to different output modes. In this work, a procedure for dynamically switching between output modes is proposed, with each mode offering different directional force/velocity transmission ratios. The procedure involves solving an optimal control problem using a projection-based direct collocation method for constrained mechanisms to find an optimal trajectory along which the mechanism changes output modes. Using this procedure, a five-bar mechanism configured at a given end-effector position is shown to switch to another output mode where the electrical energy consumed by the actuators to statically hold the mechanism reduces by 80%. Furthermore, the computed trajectories are seen to cross input singularities, a maneuver made possible by momentum planning since actuator authority is impaired at these configurations.
more »
« less
This content will become publicly available on February 1, 2027
An Exceptional Spherical Five-bar Used as a Deployable Control Surface
A spherical five-bar linkage generally has two degrees-of-freedom. However, some configurations arise where the mechanism is able to move with an additional degree-of-freedom, even with both input angles fixed. These configurations are termed exceptional. They appear in a configuration surface as embedded straight lines in the direction of its outputs. Without prior knowledge, these lines can be discovered by structured slicing of the configuration surface using the tools of polynomial homotopy continuation. This search procedure is conducted for spherical five-bars of equal-link-length. Cases for adjacent and nonadjacent input angles are analyzed. An equal-link-length spherical five-bar with 90 deg links is used for the design of a deployable control surface for an aircraft. Taking advantage of the exceptional sets in the mechanism, one motor is able to lock, deploy, and articulate the control surface.
more »
« less
- Award ID(s):
- 2144732
- PAR ID:
- 10656469
- Publisher / Repository:
- ASME Digital Collection
- Date Published:
- Journal Name:
- Journal of Mechanisms and Robotics
- Volume:
- 18
- Issue:
- 2
- ISSN:
- 1942-4302
- Page Range / eLocation ID:
- 024504
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper describes vibrational control and stability of a planar, horizontal 2-link mechanism using translational control of the base pivot. The system is a 3-DOF two-link mechanism that is subject to torsional damping, torsional stiffness, and is moving on a horizontal plane. The goal is to drive the averaged dynamics of the system to a desired configuration using a high-frequency, high-amplitude force applied at the base pivot. The desired configuration is achieved by applying an amplitude and angle of the input determined using the averaged dynamics of the system. We find the range of stable configurations that can be achieved by the system by changing the amplitude of the oscillations for a fixed input angle and oscillation frequency. The effects of varying the physical parameters on the achievable stable configurations are studied. Stability analysis of the system is performed using two methods: the averaged dynamics and averaged potential.more » « less
-
Abstract This research presents a novel design of a four-bar mechanism featuring a variable stiffness link (VSL) as the output component, aimed at enabling diverse end-effector trajectories without modifying the link length or moment input. By employing both single-beam and multi-section beam configurations within a large deflection model, the study investigates the effect of varying link stiffness under constant load and geometric conditions on the mechanism’s trajectory outcomes. The proposed design was validated through both numerical modeling and experimental testing of a built prototype. The findings confirm the prototype’s alignment with theoretical predictions, highlighting the VSL’s key role in significantly enhancing the adaptability and application range of four-bar mechanisms. This advancement circumvents the traditional constraints of fixed-trajectory mechanisms, proposing a versatile, efficient, and cost-effective solution for complex motion applications in compliant mechanism design.more » « less
-
null (Ed.)Abstract This paper presents tools and methods to design cylindrical and conical developable mechanisms from flat, planar patterns. Equations are presented that relate the link lengths and link angles of planar and spherical mechanisms to the dimensions in a flat configuration. These flat patterns can then be formed into curved, developable mechanisms. Guidelines are established to determine if a mechanism described by a flat pattern can exhibit intramobile or extramobile behavior. A developable mechanism can only potentially exhibit intramobile or extramobile behavior if none of the links extend beyond half of the flat pattern. The behavior of a mechanism can change depending on the location of the cut of the flat pattern. Different joint designs are discussed including lamina emergent torsional (LET) joints. Physical examples are presented.more » « less
-
In this study, a novel human-in-the-loop design method using a genetic algorithm (GA) is presented to design a low-cost and easy-to-use four-bar linkage medical device for upper limb muscle rehabilitation. The four-bar linkage can generate a variety of coupler point trajectories by using different link lengths. For this medical device, patients grab the coupler point handle and rotate the arm along the designed coupler point trajectory to exercise upper limb muscles. The design procedures include three basic steps: First, for a set of link lengths, a complete coupler point trajectory is generated from four-bar linkage kinematics; second, optimization-based motion prediction is utilized to predict arm motion (joint angle profiles) subjected to hand grasping and joint angle limit constraints; third, the predicted joint angles and given hand forces are imported into an OpenSim musculoskeletal arm model to calculate the muscle forces and activations by using the OpenSim static optimization. In the GA optimization formulation, the design variables are the four-bar link lengths. The objective function is to maximize a specific muscle’s exertion for a complete arm rotation. Finally, different four-bar configurations are designed for different muscle strength exercises. The proposed human-in-the-loop design approach successfully integrates GA with linkage kinematics, arm motion prediction, and OpenSim static optimization for four-bar linkage design for upper limb muscle strength rehabilitation.more » « less
An official website of the United States government
