skip to main content


Title: Vibrational Control of a 2-Link Mechanism
Abstract

This paper describes vibrational control and stability of a planar, horizontal 2-link mechanism using translational control of the base pivot. The system is a 3-DOF two-link mechanism that is subject to torsional damping, torsional stiffness, and is moving on a horizontal plane. The goal is to drive the averaged dynamics of the system to a desired configuration using a high-frequency, high-amplitude force applied at the base pivot. The desired configuration is achieved by applying an amplitude and angle of the input determined using the averaged dynamics of the system. We find the range of stable configurations that can be achieved by the system by changing the amplitude of the oscillations for a fixed input angle and oscillation frequency. The effects of varying the physical parameters on the achievable stable configurations are studied. Stability analysis of the system is performed using two methods: the averaged dynamics and averaged potential.

 
more » « less
Award ID(s):
1826152
NSF-PAR ID:
10303634
Author(s) / Creator(s):
 ;  ;  
Date Published:
Journal Name:
2020 Dynamic Systems and Control (DSC) Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vibrational control is an open loop stabilization technique via the application of highamplitude, high-frequency oscillatory inputs. The averaging theory has been the standard technique for designing vibrational control systems. However, it stipulates too high oscillation frequency that may not be practically feasible. Therefore, although vibrational control is very robust and elegant (stabilization without feedback), it is rarely used in practical applications. The only well-known example is the Kapitza pendulum; an inverted pendulum shose pivot is subject to vertical oscillation. the unstable equilibrium of the inverted pendulum gains asymptotic stability due to the high-frequency oscillation of the pivot. In this paper, we provide a new vibrational control system from Nature; flapping flight dynamics. Flapping flight is a rich dynamical system as a representative model will typically be nonlinear, time-varying, multi-body, multi-time-scale dynamical system. Over the last two decades, using direct averaging, there has been consensus in the flapping flight dynamics community that insects are unstable at the hovering equilibrium due to the lack of pitch stiffness. In this work, we perform higher-order averaging of the time-periodic dynamics of flapping flight to show a vibrational control mechanism due to the oscillation of the driving aerodynamic forces. We also experimentally demonstrate such a phenomenon on a flapping apparatus that has two degrees of freedom: forward translation and pitching motion. It is found that the time-periodic dynamics of the flapping micro-air-vehicle is naturally (without feedback) stabilized beyond a certain threshold. Moreover, if the averaged aerodynamic thrust force is produced by a propeller revolving at a constant speed while maintaining the wings stationary at their mean positions, no stabilization is observed. Hence, it is concluded that the observed stabilization in the flapping system at high frequencies is due to the oscillation of the driving aerodynamic force and, as such, flapping flight indeed enjoys vibrational stabilization. 
    more » « less
  2. null (Ed.)
    Abstract This study compares the impacts of Arctic sea ice decline on the Atlantic Meridional Overturning Circulation (AMOC) in two configurations of the Community Earth System Model (CESM) with different horizontal resolution. In a suite of model experiments we impose radiative imbalance at the ice surface, replicating a loss of sea ice cover comparable to the observed during 1979-2014, and find dramatic differences in the AMOC response between the two models. In the lower-resolution configuration, the AMOC weakens by about one third over the first 100 years, approaching a new quasi-equilibrium. By contrast, in the higher-resolution configuration, the AMOC weakens by ~10% during the first 20-30 years followed by a full recovery driven by invigorated deep water formation in the Labrador Sea and adjacent regions. We investigate these differences using a diagnostic AMOC stability indicator, which reflects the AMOC freshwater transport in and out of the basin and hence the strength of the basin-scale salt-advection feedback. This indicator suggests that the AMOC in the lower-resolution model is less stable and more sensitive to surface perturbations, as confirmed by hosing experiments mimicking Arctic freshening due to sea ice decline. Differences between the models’ mean states, including the Atlantic mean surface freshwater fluxes, control the differences in AMOC stability. Our results demonstrate that the AMOC stability indicator is indeed useful for evaluating AMOC sensitivity to perturbations. Finally, we emphasize that, despite the differences in the long-term adjustment, both models simulate a multi-decadal AMOC weakening caused by Arctic sea ice decline, relevant to climate change. 
    more » « less
  3. Robot system models often have difficulty allowing for direct command over all input degrees of freedom if the system has a large number of imposed constraints. A snake robot with more than three links and a nonholonomic wheel on each link cannot achieve arbitrary configurations in all of its joints simultaneously. For such a system, we assume partial command over a subset of the joints, and allow the rest to evolve according to kinematic chained and dynamic models. Different combinations of commanded and passive joints, as well as the presence of dynamic elements such as torsional springs, can drastically change the coupling interactions and stable oscillations of the joints. We use the oscillation modes that emerge to inform feedback controllers that achieve desired overall locomotion of the robot. 
    more » « less
  4. null (Ed.)
    Abstract

    The ability to deploy a planar surface to a desired convex profile can enhance foldable or morphing airfoils, deployable antennae and reflectors, and other applications where a specific profile geometry is desired from a planar sheet. A model using a system of rigid links joined by torsional springs of tailorable stiffness is employed to create an approximate curved surface when two opposing tip loads are applied. The physical implementation of the model uses compliant torsion bars as the torsion springs. A multidimensional optimization algorithm is presented to minimize the error from the rigid-link approximation and account for additional manufacturing and stress considerations in the torsion bars. A proof is presented to show that equal torsion spring spacing along the horizontal axis of deployed parabolic profiles will result in minimizing the area between the model’s rigid-link approximation and smooth curve. The model is demonstrated through the physical construction of a deployable airfoil surface and a metallic deployable parabolic reflector.

     
    more » « less
  5. Summary

    Real‐time hybrid simulation (RTHS) is a powerful cyber‐physical technique that is a relatively cost‐effective method to perform global/local system evaluation of structural systems. A major factor that determines the ability of an RTHS to represent true system‐level behavior is the fidelity of the numerical substructure. While the use of higher‐order models increases fidelity of the simulation, it also increases the demand for computational resources. Because RTHS is executed at real‐time, in a conventional RTHS configuration, this increase in computational resources may limit the achievable sampling frequencies and/or introduce delays that can degrade its stability and performance. In this study, the Adaptive Multi‐rate Interface rate‐transitioning and compensation technique is developed to enable the use of more complex numerical models. Such a multi‐rate RTHS is strictly executed at real‐time, although it employs different time steps in the numerical and the physical substructures while including rate‐transitioning to link the components appropriately. Typically, a higher‐order numerical substructure model is solved at larger time intervals, and is coupled with a physical substructure that is driven at smaller time intervals for actuator control purposes. Through a series of simulations, the performance of the AMRI and several existing approaches for multi‐rate RTHS is compared. It is noted that compared with existing methods, AMRI leads to a smaller error, especially at higher ratios of sampling frequency between the numerical and physical substructures and for input signals with high‐frequency content. Further, it does not induce signal chattering at the coupling frequency. The effectiveness of AMRI is also verified experimentally. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less