skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 31, 2026

Title: Parameter-Robust Preconditioning for Hybridizable Symmetric Discretizations
Hybridizable discretizations allow for the elimination of local degrees-of-freedom leading to reduced linear systems. In this paper, we determine and analyze an approach to construct parameter-robust preconditioners for these reduced systems. Using the framework of Mardal and Winther [Numer. Linear Algebra Appl., 18 (2011), pp. 1–40], we first determine a parameter-robust preconditioner for the full system. We then eliminate the local degrees-of-freedom of this preconditioner to obtain a preconditioner for the reduced system. However, not all reduced preconditioners obtained in this way are automatically robust. We therefore present conditions that must be satisfied for the reduced preconditioner to be robust. To demonstrate our approach, we determine preconditioners for the reduced systems obtained from hybridizable discretizations of the Darcy and Stokes equations. Our analysis is verified by numerical examples in two and three dimensions.  more » « less
Award ID(s):
2110781
PAR ID:
10656537
Author(s) / Creator(s):
; ;
Publisher / Repository:
SIAM
Date Published:
Journal Name:
SIAM Journal on Scientific Computing
Volume:
47
Issue:
6
ISSN:
1064-8275
Page Range / eLocation ID:
A3212 to A3238
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration (quadrature), denoted as HDG-P0 for the reaction-diffusion equation and the generalized Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the proposed HDG-P0 schemes, which hasn’t appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix–Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings. 
    more » « less
  2. Abstract This work presents an overview of the most relevant results obtained by the authors regarding the numerical solution of the Biot’s consolidation problem by preconditioning techniques. The emphasis here is on the design of parameter-robust preconditioners for the efficient solution of the algebraic system of equations resulting after proper discretization of such poroelastic problems. The classical two- and three-field formulations of the problem are considered, and block preconditioners are presented for some of the discretization schemes that have been proposed by the authors for these formulations. These discretizations have been proved to be well-posed with respect to the physical and discretization parameters, what provides a framework to develop preconditioners that are robust with respect to such parameters as well. In particular, we construct both norm-equivalent (block diagonal) and field-of-value-equivalent (block triangular) preconditioners, which are proved to be parameter-robust. The theoretical results on this parameter-robustness are demonstrated by considering typical benchmark problems in the literature for Biot’s model. 
    more » « less
  3. Abstract We propose a uniform block-diagonal preconditioner for condensed $$H$$(div)-conforming hybridizable discontinuous Galerkin schemes for parameter-dependent saddle point problems, including the generalized Stokes equations and the linear elasticity equations. An optimal preconditioner is obtained for the stiffness matrix on the global velocity/displacement space via the auxiliary space preconditioning technique (Xu (1994) The Auxiliary Space Method and Optimal Multigrid Preconditioning Techniques for Unstructured Grids, vol. 56. International GAMM-Workshop on Multi-level Methods (Meisdorf), pp. 215–235). A spectrally equivalent approximation to the Schur complement on the element-wise constant pressure space is also constructed, and an explicit computable exact inverse is obtained via the Woodbury matrix identity. Finally, the numerical results verify the robustness of our proposed preconditioner with respect to model parameters and mesh size. 
    more » « less
  4. Wave propagation is fundamental to applications including natural resource exploration, nuclear fusion research, and military defense, among others. However, developing accurate and efficient numerical algorithms for solving time-harmonic wave propagation problems is notoriously difficult. One difficulty is that classical discretization techniques (e.g., Galerkin finite elements, finite difference, etc.) yield indefinite discrete systems that preclude the use of many scalable solution algorithms. Significant progress has been made to develop specialized preconditioners for high-frequency wave propagation problems but robust and scalable solvers for general problems, including non-homogenous media and complex geometries, remain elusive. An alternative approach is to use minimum residual discretization methods—that yield Hermitian positive-definite discrete systems—and may be amenable to more standard preconditioners. Indeed, popularization of the first-order system least-squares methodology (FOSLS) was driven by the applicability of geometric and algebraic multigrid to otherwise indefinite problems. However, for wave propagation problems, FOSLS is known to be highly dissipative and is thus less competitive in the high-frequency regime. The discontinuous Petrov–Galerkin (DPG) method of Demkowicz and Gopalakrishnan is a minimum residual finite element method with several additional attractive properties: mesh-independent stability, a built-in error indicator, and applicability to a number of variational formulations. In the context of high-frequency wave propagation, the ultraweak DPG formulation has been observed to produce pollution error roughly commensurate to Galerkin discretizations. DPG discretizations may thus deliver accuracy typical of classical discretization techniques, but result in Hermitian positive-definite discrete systems that are often more amenable to preconditioning. A multigrid preconditioner for DPG systems, developed in the dissertation work of S. Petrides, was shown to scale efficiently in a shared-memory implementation. The primary objective of this dissertation is development of an efficient, distributed implementation of the DPG multigrid solver (DPG-MG). The distributed DPG-MG solver developed in this work will be demonstrated to be massively scalable, enabling solution of three-dimensional problems with O(10¹²) degrees of freedom on up to 460 000 CPU cores, an unprecedented scale for high-frequency wave propagation. The scalability of the DPG-MG solver will be further combined with hp-adaptivity to enable efficient solution of challenging real-world high-frequency wave propagation problems including optical fiber modeling, simulation of RF heating in tokamak devices, and seismic simulation. These applications include complex three-dimensional geometries, heterogeneous and anisotropic media, and localized features; demonstrating the robustness and versatility of the solver and tools developed in this dissertation. 
    more » « less
  5. We devise multigrid preconditioners for linear-quadratic space-time distributed parabolic optimal control problems. While our method is rooted in earlier work on elliptic control, the temporal dimension presents new challenges in terms of algorithm design and quality. Our primary focus is on the cG(s)dG(r) discretizations which are based on functions that are continuous in space and discontinuous in time, but our technique is applicable to various other space-time finite element discretizations. We construct and analyse two kinds of multigrid preconditioners: the first is based on full coarsening in space and time, while the second is based on semi-coarsening in space only. Our analysis, in conjunction with numerical experiments, shows that both preconditioners are of optimal order with respect to the discretization in case of cG(1)dG(r) for r = 0, 1 and exhibit a suboptimal behaviour in time for Crank–Nicolson. We also show that, under certain conditions, the preconditioner using full space-time coarsening is more efficient than the one involving semi-coarsening in space, a phenomenon that has not been observed previously. Our numerical results confirm the theoretical findings. 
    more » « less