A prevailing paradigm suggests that species richness increases with area in a decelerating way. This ubiquitous power law scaling, the species–area relationship, has formed the foundation of many conservation strategies. In spatially complex ecosystems, however, the area may not be the sole dimension to scale biodiversity patterns because the scale-invariant complexity of fractal ecosystem structure may drive ecological dynamics in space. Here, we use theory and analysis of extensive fish community data from two distinct geographic regions to show that riverine biodiversity follows a robust scaling law along the two orthogonal dimensions of ecosystem size and complexity (i.e., the dual scaling law). In river networks, the recurrent merging of various tributaries forms fractal branching systems, where the prevalence of branching (ecosystem complexity) represents a macroscale control of the ecosystem’s habitat heterogeneity. In the meantime, ecosystem size dictates metacommunity size and total habitat diversity, two factors regulating biodiversity in nature. Our theory predicted that, regardless of simulated species’ traits, larger and more branched “complex” networks support greater species richness due to increased space and environmental heterogeneity. The relationships were linear on logarithmic axes, indicating power law scaling by ecosystem size and complexity. In support of this theoretical prediction, the power laws have consistently emerged in riverine fish communities across the study regions (Hokkaido Island in Japan and the midwestern United States) despite hosting different fauna with distinct evolutionary histories. The emergence of dual scaling law may be a pervasive property of branching networks with important implications for biodiversity conservation.
more »
« less
This content will become publicly available on March 21, 2026
Unifying spatial scaling laws of biodiversity and ecosystem stability
While both species richness and ecosystem stability increase with area, how these scaling patterns are linked remains unclear. Our theoretical and empirical analyses of plant and fish communities show that the spatial scaling of ecosystem stability is determined primarily by the scaling of species asynchrony, which is in turn driven by the scaling of species richness. In wetter regions, plant species richness and ecosystem stability both exhibit faster accumulation with area, implying potentially greater declines in biodiversity and stability following habitat loss. The decline in ecosystem stability after habitat loss can be delayed, creating a stability debt mirroring the extinction debt of species. By unifying two foundational scaling laws in ecology, our work underscores that ongoing biodiversity loss may destabilize ecosystems across spatial scales.
more »
« less
- Award ID(s):
- 2224852
- PAR ID:
- 10656574
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science
- Volume:
- 387
- Issue:
- 6740
- ISSN:
- 0036-8075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Habitat loss disrupts species interactions through local extinctions, potentially orphaning species that depend on interacting partners, via mutualisms or commensalisms, and increasing secondary extinction risk. Orphaned species may become functionally or secondarily extinct, increasing the severity of the current biodiversity crisis. While habitat destruction is a major cause of biodiversity loss, the number of secondary extinctions is largely unknown. We investigate the relationship between habitat loss, orphaned species, and bipartite network properties. Using a real seed dispersal network, we simulate habitat loss to estimate the rate at which species are orphaned. To be able to draw general conclusions, we also simulate habitat loss in synthetic networks to quantify how changes in network properties affect orphan rates across broader parameter space. Both real and synthetic network simulations show that even small amounts of habitat loss can cause up to 10% of species to be orphaned. More area loss, less connected networks, and a greater disparity in the species richness of the network's trophic levels generally result in more orphaned species. As habitat is lost to land‐use conversion and climate change, more orphaned species increase the loss of community‐level and ecosystem functions. However, the potential severity of repercussions ranges from minimal (no species orphaned) to catastrophic (up to 60% of species within a network orphaned). Severity of repercussions also depends on how much the interaction richness and intactness of the community affects the degree of redundancy within networks. Orphaned species could add substantially to the loss of ecosystem function and secondary extinction worldwide.more » « less
-
Abstract Global biodiversity is declining at rates faster than at any other point in human history. Experimental manipulations at small spatial scales have demonstrated that communities with fewer species consistently produce less biomass than higher diversity communities. Understanding the consequences of the global extinction crisis for ecosystem functioning requires understanding how local experimental results are likely to change with increasing spatial and temporal scales and from experiments to naturally assembled systems.Scaling across time and space in a changing world requires baseline predictions. Here, we provide a graphical null model for area scaling of biodiversity–ecosystem functioning relationships using observed macroecological patterns: the species–area curve and the biomass–area curve. We use species–area and biomass–area curves to predict how species richness–biomass relationships are likely to change with increasing sampling extent. We then validate these predictions with data from two naturally assembled ecosystems: a Minnesota savanna and a Panamanian tropical dry forest.Our graphical null model predicts that biodiversity–ecosystem functioning relationships are scale‐dependent. However, we note two important caveats. First, our results indicate an apparent contradiction between predictions based on measurements in biodiversity–ecosystem functioning experiments and from scaling theory. When ecosystem functioning is measured as per unit area (e.g. biomass per m2), as is common in biodiversity–ecosystem functioning experiments, the slope of the biodiversity ecosystem functioning relationship should decrease with increasing scale. Alternatively, when ecosystem functioning is not measured per unit area (e.g. summed total biomass), as is common in scaling studies, the slope of the biodiversity–ecosystem functioning relationship should increase with increasing spatial scale. Second, the underlying macroecological patterns of biodiversity experiments are predictably different from some naturally assembled systems. These differences between the underlying patterns of experiments and naturally assembled systems may enable us to better understand when patterns from biodiversity–ecosystem functioning experiments will be valid in naturally assembled systems.Synthesis. This paper provides a simple graphical null model that can be extended to any relationship between biodiversity and any ecosystem functioning across space or time. Furthermore, these predictions provide crucial insights into how and when we may be able to extend results from small‐scale biodiversity experiments to naturally assembled regional and global ecosystems where biodiversity is changing.more » « less
-
Abstract Habitat loss is rarely truly random and often occurs selectively with respect to the plant species comprising the habitat. Such selective habitat removal that decreases plant species diversity, that is, habitat simplification or homogenization, may have two negative effects on other species. First, the reduction in plant community size (number of individuals) represents habitat loss for species at higher trophic levels who use plants as habitat. Second, when plants are removed selectively, the resulting habitat simplification decreases the diversity of resources available to species at higher trophic levels. It follows that habitat loss combined with simplification will reduce biodiversity more than habitat loss without simplification. To test this, we experimentally implemented two types of habitat loss at the plant community level and compared biodiversity of resident arthropods between habitat loss types. In the first type of habitat loss, we reduced habitats by 50% nonselectively, maintaining original relative abundance and diversity of plant species and therefore habitat and resource diversity for arthropods. In the second type of habitat loss, we reduced habitats by 50% selectively, removing all but one common plant species, dramatically simplifying habitat and resources for arthropods. We replicated this experiment across three common plant species:Asclepias tuberosa,Solidago altissima, andBaptisia alba. While habitat loss with simplification reduced arthropod species richness compared with habitat loss without simplification, neither type of habitat loss affected diversity, measured as effective number of species (ENS), or species evenness as compared with controls. Instead, differences in ENS and evenness were explained by the identity of the common plant species. Our results indicate that the quality of remaining habitat, in our case plant species identity, may be more important for multi‐trophic diversity than habitat diversity per se.more » « less
-
Abstract Global changes such as nitrogen (N) enrichment and elevated carbon dioxide (CO2) are known to exacerbate biodiversity loss in grassland ecosystems. They do so by modifying processes whose strength may vary at different spatial scales. Yet, whether and how global changes impact plant diversity at different spatial scales remains elusive.We collected data on species presence and cover at a high resolution in the third decade of a long‐term temperate grassland biodiversity—global change experiment. Based on the data, we constructed species—area relationships across three spatial orders of magnitude (from 0.01 to 3.24 m2) and compared them for the different global change treatments.We found that N enrichment, both under ambient and elevated CO2levels, decreased species richness across almost all spatial scales, with proportional decreases being largest at the smallest spatial scales. Elevated CO2also reduced richness at both ambient and enriched N supply rates but did so proportionally across all spatial scales. Suppression of diversity was stronger at all scales for diversity indices that include relative abundances than for species richness. Taken together, these results suggest that CO2and N are re‐organizing this grassland system by increasingly favouring, at fine scales, a small subset of dominant species.Synthesis: Our results highlight the role of spatial scales in influencing biodiversity loss, especially when it is driven by anthropogenic resource changes that might influence species interactions differently across spatial scales.more » « less
An official website of the United States government
