S-STEM scholarships are provided to academically talented low-income engineering students with the intent of increasing retention as well as successful transfer and subsequent graduation rates for a bachelor's degree in an Engineering or Computer Science (ECS) field. Since the spring of 2020, 71 unique students have been awarded scholarships. At this time, there are 22 active scholars, 34 have already successfully transferred to complete their ECS degree and a quarter of those scholars have since graduated. Beyond the financial support, NSF S-STEM programs center on providing academic, social and professional development. In addition, the research component of this program at a midwestern HSI community college is exploring the following questions: Do students recognize themselves as engineers prior to transfer? Do students feel a sense of belonging in their Engineering and Computer Science programs? Does being an NSF S-STEM Scholar impact either of these outcomes? The importance of developing a strong engineering identity as an indicator of persistence to degree completion has been the focus of considerable research over the last fifteen years. However, there is limited understanding of how community college experiences influence engineering identity development. Since the spring of 2020, students have been completing surveys during the first six weeks of the fall semester and during the last four weeks of the spring semester. Engineering identity was explored with questions centered on interest, recognition and competence as well as self-efficacy in skills such as tinkering, design and experimentation. Sense of belonging indicators were examined in terms of inclusion, sense of belonging to the community and sense of belonging to their major. This paper will provide quantitative analysis of the data examining outcomes based on demographics including ethnicity, gender, scholar status and length of time in the program.
more »
« less
This content will become publicly available on December 9, 2026
Building Community, Sustaining Success: The Impact of the Ithaca College S-STEM Program on Low-Income STEM Students' Academic Journeys
Ithaca College S-STEM is a Track 1 National Science Foundation (NSF) Scholarships in STEM (S-STEM) initiative designed to address the challenges of recruiting and retaining high-achieving, low-income students majoring in physics, mathematics, and computer science. The program focuses on improving retention by fostering a sense of belonging among scholars, with their peers, and within their academic disciplines and the institution. In this paper, we discuss how an intensive program of first year supports, coupled with research experiences and attendance at discipline-based conferences later in their college career, impacted students’ sense of belonging. Further, we provide insight into how alumni perceived their persistence as connected to their sense of belonging.
more »
« less
- Award ID(s):
- 1930351
- PAR ID:
- 10656598
- Publisher / Repository:
- The Institute for STEM Education and Research
- Date Published:
- Journal Name:
- Journal of STEM Education: Innovations and Research
- Volume:
- 26
- Issue:
- 4
- ISSN:
- 1557-5284
- Page Range / eLocation ID:
- 68 to 75
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Since 2009, the mechanical engineering (ME) scholarship-science technology engineering and mathematics (S-STEM) Program at the University of Maryland Baltimore County (UMBC) has provided financial support and program activities to ME undergraduate students aiming at improving their retention and graduation rates. The objective of this study is to identify program activities that were most effective to help students for improvements. Current ME S-STEM scholars were asked to complete a survey that measures their scientific efficacy, engineering identity, expectations, integration, and sense of belonging, as well as how program activities impact their attitudes and perceptions. Analyses of 36 collected surveys showed that scholars reported high levels of engineering identity, expectations, and sense of belonging. However, further improvements were needed to help students in achieving scientific efficacy and academic integration into the program. Results demonstrated that pro-active mentoring was the most effective method contributing to positive attitudes and perceptions. The implemented S-STEM research-related activities and internship were viewed favorably by the scholars in helping them establish their scientific efficacy and engineering identity, and understand their expectations and goals. Community building activities were considered helpful for them to integrate into campus life and improve their sense of belonging to the campus and program. Scholars identified mentoring, research related activities, internships, and social interaction with faculty and their peers as important factors for their retention and graduation. Although the sample size was small in the study, we believe that the cost-effective activities identified could be adopted by other institutions to further improve students' retention and graduation rates in engineering programs.more » « less
-
This paper examines the impact of a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (NSF S-STEM) Program at a large, Minority-Serving institution in the western U.S. Despite growing efforts to diversify STEM fields, underrepresented minority (URM) students continue to face significant challenges in persistence and success. This scholarship program addresses these challenges by providing financial support, faculty and peer mentorship, and skills development opportunities to academically talented and low-income URM STEM students. This study evaluates how participation in the program enhances key noncognitive skills, such as students' sense of belonging, leadership and collaboration skills, and science identity, which are critical to STEM persistence. Using both survey and university-based data among the 47 participating scholars, results reveal that program participants report strong levels of sense of belonging, high efficacy in leadership and collaboration skills, and strong science/math identities. Additionally, compared to university rates, scholarship students showed above-average retention and graduation rates, with the majority pursuing graduate studies or careers in STEM. These findings highlight the importance of comprehensive support programs that integrate financial aid, mentorship, and professional development to promote persistence and success among URM students in STEM fields.more » « less
-
Achieving Change in our Communities for Equity and Student Success (ACCESS) in STEM at the University of Washington Tacoma started as a Track 1 S-STEM program in 2018 and has supported 69 students to date. This year we received Track 2 funding and welcomed our fifth cohort to campus, with funding to support ~32 additional students through 2026. University of Washington Tacoma is an Asian American and Native American Pacific Islander-serving institution (AANAPISI), and we serve a high proportion of racial minority and first generation college students. Our ACCESS scholars are pursuing bachelor’s degrees in Mathematics, Environmental Science, Biomedical Sciences, Information Technology, Computer Science and Systems, Computer Engineering and Systems, Electrical Engineering, Mechanical Engineering, and Civil Engineering, with Computer Science and Engineering representing over 60% of ACCESS scholars to date. First-time college students and first-year transfer students receive full scholarships for their first two years, and partial scholarships for their third and fourth years. The project includes an optional Early Fall Math course to enhance entry into STEM majors, and participants are able to engage in a Research Experience or project-based Introduction to Engineering course in their first year. Coupled with individual faculty mentoring and an on-campus STEM living learning community, the quarterly Success in STEM seminar course helps scholars form a cohesive community through group mentoring, as well as develop a sense of belonging, identity, and empowerment to transform the culture of STEM. This program is distinguished by its focus on pre-STEM majors in their first and second years on campus, and includes mentor training for ~30-40 faculty in teaching and mentoring diverse student populations, thus impacting all students in our majors. Our goal was to evaluate the effectiveness of a program that focuses on the first two years of college and provides financial support, courses to introduce students to research and project-based engineering, and intensive mentoring in increasing retention and academic success for Computer Science and Engineering (CS+E) students, and whether this program helps to close equity gaps for CS+E students who are low socioeconomic status (SES), underrepresented minorities (URMs), female, and/or first generation in college (First Gen) students. We compared our student scholars to a comparison group of students who met eligibility requirements but did not participate in the program. Program scholars had higher first and second year retention, and had significantly higher GPAs. The pandemic resulted in significant social, emotional, and economic stresses for our program scholars, which may have heightened the impact of the ACCESS in STEM program.more » « less
-
The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is in year four of a five-year NSF S-STEM funded program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This program offered financial, academic, and professional support to three two-year cohorts of students and is in the final year of the third and final cohort of the currently funded grant cycle. The SEECRS project aimed to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Over the course of the program 39 individuals received scholarship support. The program supported scholarship recipients through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Key elements of the program are: a required two-credit course that emphasized STEM identity development, course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and paring of each scholar with a faculty mentor. This paper presents data from the first four years of the program including participant outcomes and feedback on their experiences. Results from project evaluation activities such as pre and post surveys, focus groups, exit interviews, and faculty surveys are also presented and analyzed to compare how gains reported by program participants regarding such attributes as their STEM identities and sense of belonging compare to responses from a control group of students who did not participate in the program. Preliminary identification of some program best practices will also be presented.more » « less
An official website of the United States government
