Amidyl radicals mediate a diverse array of intermolecular aliphatic C(sp3)–H and decarboxylative functionalizations. Interestingly, we have observed that decarboxylative processes proceed with excellent chemoselectivity even with substrates containing weak C(sp3)–H bonds. Herein, we report a mechanistic basis for understanding this high chemoselectivity of amidyl radicals through divergent reaction pathways. A computational assessment of the transition state SOMOs and intrinsic bonding orbitals for amidyl radical hydrogen atom transfer (HAT) and concerted proton-electron transfer (CPET) processes support a shift in mechanism between aliphatic C(sp3)–H or carboxylic acid O–H abstraction, which is supported by experimental studies. These findings provide a rationale for the chemoselectivity of decarboxylative reactions mediated by amidyl radicals.
more »
« less
This content will become publicly available on October 20, 2026
Conjugative Radical–Radical Coupling: Transition-Metal-Free Dialkylation of Alkenes
Not AvailableAn unmet challenge in radical relay difunctionalization of alkenes is incorporation of two discrete transient radicals in a regiocontrolled manner under transition metal-free conditions. Current protocols typically rely on persistent radicals or organometallic surrogates to trap radical adducts, thereby suppressing the undesired reactions but limiting the diversity. The direct use of two transient radicals remains synthetically elusive. We present a visible-light photoredox catalyzed alkene dialkylation strategy via a kinetically guided conjugative radical-radical coupling. This transition-metal-free approach enables two direct C(sp3)−C(sp3) bond formations across the C=C double bond using alkyl and allyl or benzyl radicals. Mechanistic investigations reveal the radical nature of the process. The success of this approach hinges on kinetically controlled radical addition to alkene substrates and the steric protection of the resulting radical adducts. This mild and functional-group tolerant reaction exhibits broad substrate scope and tolerates structurally complex substrates, highlighting its potential for late-stage functionalization.
more »
« less
- Award ID(s):
- 2154593
- PAR ID:
- 10656632
- Publisher / Repository:
- Chin. Chem. Soc.
- Date Published:
- Journal Name:
- CCS Chemistry
- ISSN:
- 2096-5745
- Page Range / eLocation ID:
- 1 to 12
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Visible‐light‐driven C−C bond formation utilizing ketyl radical (Cketyl) species has attracted increasing attention recently, as it provides a direct route for the synthesis of complex molecules. However, the most‐developed homogeneous photocatalytic systems for the generation and utilization of ketyl radicals usually entail noble metal‐based (e. g., Ru and Ir) photosensitizers, which suffer from not only high cost but also potential degradation and hence pose challenges in product separation and purification. In contrast, readily accessible, inexpensive, and recyclable semiconductors represent a class of attractive and alternative photocatalysts but remain much less explored for photocatalytic ketyl radical initiated C−C bond formation. This work demonstrates that a wide range of industrially important chemicals, including substituted chromanes and tertiary alcohols, can be produced on ZnIn2S4under visible light irradiation through intramolecular cyclization (Cketyl−Csp2) and intermolecular cross‐coupling (Cketyl−Csp3) reactions, respectively, using ketyl radicals. A suite of experimental studies aided by computational investigation were carried out to shed light on the mechanistic insights of these two types of ketyl radical initiated C−C coupling reactions on ZnIn2S4.more » « less
-
The methyl moiety is a key functional group that can result in major improvements in the potency and selectivity of pharmaceutical agents. We present a radical relay C–H methylation methodology that employs a β-diketiminate copper catalyst capable of methylating unactivated C(sp3)–H bonds. Taking advantage of the bench-stable DABAL-Me3, an amine-stabilized trimethylaluminum reagent, methylation of a range of substrates possessing both activated and unactivated C(sp3)–H bonds proceeds with a minimal amount of overmethylation. Mechanistic studies supported by both experiment and computation suggest the intermediacy of a copper(II) methyl intermediate reactive toward both the loss of the methyl radical as well capture of radicals R• to form R–Me bonds.more » « less
-
null (Ed.)A multi-component radical addition strategy enables difunctionalization of alkenes with heteroarenes and a variety of radical precursors, including N 3 , P(O)R 2 , and CF 3 . This unified approach for coupling diverse classes of electrophilic radicals and heteroarenes to vinyl ethers allows for direct, vicinal C–C as well as C–N, C–P, and C–R f bond formation.more » « less
-
Transition metal–catalyzed cross-coupling reactions are some of the most widely used methods in chemical synthesis. However, despite notable advantages of iron (Fe) as a potentially cheaper, more abundant, and less toxic transition metal catalyst, its practical application in multicomponent cross-couplings remains largely unsuccessful. We demonstrate 1,2-bis(dicyclohexylphosphino)ethane Fe–catalyzed coupling of α-boryl radicals (generated from selective radical addition to vinyl boronates) with Grignard reagents. Then, we extended the scope of these radical cascades by developing a general and broadly applicable Fe-catalyzed multicomponent annulation–cross-coupling protocol that engages a wide range of π-systems and permits the practical synthesis of cyclic fluorous compounds. Mechanistic studies are consistent with a bisarylated Fe(II) species being responsible for alkyl radical generation to initiate catalysis, while carbon-carbon bond formation proceeds between a monoarylated Fe(II) center and a transient alkyl radical.more » « less
An official website of the United States government
