This content will become publicly available on January 1, 2027
1,2-Hydrogen atom transfer of aminyl radicals under photoredox catalysis for the synthesis of α-amino phosphine oxides
Photocatalytic 1,2-HAT of N-centered radicals leads to C-centered α-amino radicals, with trapping by phosphine oxides to access α-amino phosphine oxides. Mechanistic experiments and DFT calculations support a 1,2-HAT pathway.
more »
« less
- Award ID(s):
- 2154593
- PAR ID:
- 10656633
- Publisher / Repository:
- Royal Chemical Society
- Date Published:
- Journal Name:
- Chemical Science
- ISSN:
- 2041-6520
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The selective functionalization of remote C–H bonds via intramolecular hydrogen atom transfer (HAT) is transformative for organic synthesis. This radical-mediated strategy provides access to novel reactivity that is complementary to closed-shell pathways. As modern methods for mild generation of radicals are continually developed, inherent selectivity paradigms of HAT mechanisms offer unparalleled opportunities for developing new strategies for C–H functionalization. This review outlines the history, recent advances, and mechanistic underpinnings of intramolecular HAT as a guide to addressing ongoing challenges in this arena. 1 Introduction 2 Nitrogen-Centered Radicals 2.1 sp3 N-Radical Initiation 2.2 sp2 N-Radical Initiation 3 Oxygen-Centered Radicals 3.1 Carbonyl Diradical Initiation 3.2 Alkoxy Radical Initiation 3.3 Non-alkoxy Radical Initiation 4 Carbon-Centered Radicals 4.1 sp2 C-Radical Initiation 4.2 sp3 C-Radical Initiation 5 Conclusionmore » « less
-
Abstract Carbosulfenylation of olefins represents an important class of reactions for the synthesis of structurally diverse organosulfur compounds. Previous studies typically yield 1,2‐regioselectivity. In the context of diversity‐oriented synthesis, accessing the regioreversed products is desirable, significantly broadening the scope of these reactions. In this study, we report a nickel‐catalyzed 2,1‐carbosulfenylation of trifluoromethyl‐ andgem‐difluoroalkenes, using free thiols and benzyl bromides as sulfur and carbon sources, respectively. The unusual regioselectivity observed is enabled by a “radical sorting” mechanism. The Ni catalyst activates benzyl bromide to generate a benzylic radical that undergoes hydrogen atom transfer (HAT) with the thiol to form a sulfur‐centered radical. The sulfur radical subsequently adds to the fluoroalkenes, resulting in an α‐fluoroalkyl C‐radical. This radical undergoes SH2 with a Ni–CH2Ar to form a C(sp3)─C(sp3) bond and quaternary center, ultimately producing valuable fluoroalkyl thioethers. Isotopic labeling experiments corroborate a hydrogen atom transfer (HAT) event within the working mechanism.more » « less
-
Generation of Diazomethyl Radicals by Hydrogen Atom Abstraction and Their Cycloaddition with AlkenesAbstract A general catalytic methodology for the synthesis of pyrazolines from α‐diazo compounds and conjugated alkenes is reported. The direct hydrogen atom transfer (HAT) process of α‐diazo compounds promoted by thetert‐butylperoxy radical generates electrophilic diazomethyl radicals, thereby reversing the reactivity of the carbon atom attached with the diazo group. The regiocontrolled addition of diazomethyl radicals to carbon‐carbon double bonds followed by intramolecular ring closure on the terminal diazo nitrogen and tautomerization affords a diverse set of pyrazolines in good yields with excellent regioselectivity. This strategy overcomes the limitations of electron‐deficient alkenes in traditional dipolar [3+2]‐cycloaddition of α‐diazo compounds with alkenes. Furthermore, the straightforward formation of the diazomethyl radicals provides umpolung reactivity, thus opening new opportunities for the versatile transformations of diazo compounds.more » « less
-
Abstract Here, we report CdS quantum dot (QD) gels, a three‐dimensional network of interconnected CdS QDs, as a new type of direct hydrogen atom transfer (d‐HAT) photocatalyst for C−H activation. We discovered that the photoexcited CdS QD gel could generate various neutral radicals, including α‐amido, heterocyclic, acyl, and benzylic radicals, from their corresponding stable molecular substrates, including amides, thio/ethers, aldehydes, and benzylic compounds. Its C−H activation ability imparts a broad substrate and reaction scope. The mechanistic study reveals that this reactivity is intrinsic to CdS materials, and the neutral radical generation did not proceed via the conventional sequential electron transfer and proton transfer pathway. Instead, the C−H bonds are activated by the photoexcited CdS QD gel via a d‐HAT mechanism. This d‐HAT mechanism is supported by the linear correlation between the logarithm of the C−H bond activation rate constant and the C−H bond dissociation energy (BDE) with a Brønsted slopeα=0.5. Our findings expand the currently limited direct hydrogen atom transfer photocatalysis toolbox and provide new possibilities for photocatalytic C−H activation.more » « less
An official website of the United States government
