skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 16, 2026

Title: Redox-Responsive Cross-Linking of Polycarbonate Nanomedicines for Enhanced Stability and Controlled Drug Delivery
Not AvSelf-assembled polymeric micelles formed from amphiphilic block copolymers offer a promising strategy for enhanced drug delivery due to their biocompatibility and controlled release. However, challenges such as their poor colloidal stability under diluted conditions and degradation during storage and circulation limit their further applications. To address these issues, we developed a straightforward method for constructing cross-linked polycarbonate micelles that enhance stability while allowing for controlled stimuli-responsive drug delivery. By utilizing disulfide-based cross-linking and covalent conjugation of the anticancer drug, our approach maintains micelle integrity and extremely high drug loading over extended periods as well as the superior control of triggered drug release compared to non-cross-linked versions, demonstrating enhanced stability in complex biological environments and improved anticancer efficacy, presenting a novel platform for stable polymer–drug conjugate nanocarriers, holding significant therapeutic potential for targeted cancer treatment.  more » « less
Award ID(s):
2238812
PAR ID:
10656660
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
Volume:
17
Issue:
15
ISSN:
1944-8244
Page Range / eLocation ID:
23135 to 23145
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Nanotechnology platforms, such as nanoparticles, liposomes, dendrimers, and micelles have been studied extensively for various drug deliveries, to treat or prevent diseases by modulating physiological or pathological processes. The delivery drug molecules range from traditional small molecules to recently developed biologics, such as proteins, peptides, and nucleic acids. Among them, proteins have shown a series of advantages and potential in various therapeutic applications, such as introducing therapeutic proteins due to genetic defects, or used as nanocarriers for anticancer agents to decelerate tumor growth or control metastasis. This review discusses the existing nanoparticle delivery systems, introducing design strategies, advantages of using each system, and possible limitations. Moreover, we will examine the intracellular delivery of different protein therapeutics, such as antibodies, antigens, and gene editing proteins into the host cells to achieve anticancer effects and cancer vaccines. Finally, we explore the current applications of protein delivery in anticancer treatments. 
    more » « less
  2. Mesoporous silica nanoparticles (MSNs) are highly porous carriers used in drug and gene delivery research for biomedical applications due to their high surface area, narrow particle size distribution, and low toxicity. Incorporating disulfide (SS) bonds into the walls of MSNs (MSN-SSs) offers a dual pathway for drug release due to the pore delivery and collapsing porous structure after cellular engulfment. This study explores the effect of embedding disulfide bonds into MSNs through various structural and biological characterization methods. Raman spectroscopy is employed to detect the SS bonds, SEM and TEM for morphology analyses, and a BET analysis to determine the required amount of SSs for achieving the largest surface area. The MSN-SSs are further loaded with doxorubicin, an anticancer drug, to assess drug release behavior under various pH conditions. The MSN-SS system demonstrated an efficient pH-responsive drug release, with over 65% of doxorubicin released under acidic conditions and over 15% released under neutral conditions. Cleaving the SS bonds using dithiothreitol increased the release to 94% in acidic conditions and 46% in neutral conditions. Biocompatibility studies were conducted using cancer cells to validate the engulfment of the nanoparticle. These results demonstrate that MSN-SS is a feasible nanocarrier for controlled-release drug delivery. 
    more » « less
  3. null (Ed.)
    Abstract Advantages of polymeric nanoparticles as drug delivery systems include controlled release, enhanced drug stability and bioavailability, and specific tissue targeting. Nanoparticle properties such as hydrophobicity, size, and charge, mucoadhesion, and surface ligands, as well as administration route and suspension media affect their ability to overcome ocular barriers and distribute in the eye, and must be carefully designed for specific target tissues and ocular diseases. This review seeks to discuss the available literature on the biodistribution of polymeric nanoparticles and discuss the effects of nanoparticle composition and administration method on their ocular penetration, distribution, elimination, toxicity, and efficacy, with potential impact on clinical applications. 
    more » « less
  4. Not AvaDisulfide-containing synthetic polypeptides hold significant promise as biodegradable and biocompatible carriers for controlled drug and gene delivery, enabling triggered therapeutic release with reduced cytotoxicity. However, disulfide incorporation remains challenging, whether through direct polymerization of disulfide-containing monomers or postpolymerization modification. In this work, we present an innovative and simple strategy to incorporate disulfide bonds into polypeptides using ring-opening polymerization of the N-carboxyanhydride of homocysteine, a thiol-containing amino acid. The polymerization was well-controlled, yielding repeating units up to 100 with narrow dispersity. The pendant side chains were readily converted into various GSH-responsive moieties, including anionic, neutral, zwitterionic, and cationic groups, as well as therapeutic agents toward a wide range of biomedical applications. The drug-loaded amphiphilic polymer-drug conjugates displayed triggered release of intact drug and potent anticancer activities. Furthermore, cationic polyhomocysteine derivatives effectively delivered siRNA, eGFP mRNA, and more complex CRISPR components with extremely low cytotoxicity and excellent transfection efficiency.ilable 
    more » « less
  5. Controlled-release materials are desirable for many delivery applications and have been used to improve the efficiency of fertilizers and pesticides in crop management. Due to their potential to reduce application of toxic chemicals while prolonging exposure to active agents, controlled-release nanomaterials are currently being investigated for increasing agricultural production and preventing overfertilization. Hydrogels are underexplored as controlled-release nanomaterials and can deliver many types of cargo, from metal ions to small molecules. Alginate-based hydrogels are biocompatible and their internal carboxylic acids coordinate agriculturally valuable micronutrients like Cu2+, Zn2+, and Ca2+. Hydrogels comprising ionic and nonionic polymers can coordinate agriculturally valuable micronutrients, and the combination of ionic and nonionic polymers results in hydrogels with tunable release profiles. Alginate, for example, contains carboxylates that ionically cross-link with divalent cations like Cu2+, Zn2+, and Ca2+, while polar moieties on chitin enable nonionic coordination. To our knowledge, soft-material copper-loaded nanoparticles have not yet been applied as controlled-release materials for foliar delivery. In this work, we present the synthesis and micronutrient release characteristics of hydrogel nanoparticles containing Cu2+, which is coordinated by ionic and nonionic polymers. Hydrogel nanoparticles (HNPs) were prepared by liquid–liquid emulsion techniques and cross-linked with Cu2+ to form double-network hydrogels made from alginate and non-cross-linking chitin. Nanoparticles (100–300 nm in diameter) were characterized by cryogenic electron microscopy, nanoparticle tracking analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The copper release profiles of HNPs with different polymer compositions were compared. HNPs containing both chitin and alginate released 8–20 times more copper than HNPs with alginate alone, suggesting that the presence of non-cross-linking polymers improves copper release. Thus, HNP delivery characteristics can be tuned by manipulating intraparticle bond dynamics in the hydrogel polymer matrix. 
    more » « less