skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 30, 2026

Title: The study of plasmodesmal biology using proximity labeling technologies
Abstract Plasmodesmata (PD) are essential cellular structures that facilitate intercellular communication in plants, enabling the transport of nutrients and signaling molecules. Over the past decades, significant strides have been made in unraveling the formation, function, and regulation of PD. Identification and functional characterization of PD-associated proteins have greatly advanced our understanding of PD. This review discusses past efforts in uncovering PD proteomes and highlights recent breakthroughs in applying proximity labeling (PL) assays to map plant protein interactomes. Special attention is given to using PL assays in studying PD biology, emphasizing their potential to drive future advancements and deepen our understanding of PD function and regulation. By integrating PL technologies with established methodologies, researchers can gain comprehensive insights into the dynamic composition and roles of PD.  more » « less
Award ID(s):
2339067
PAR ID:
10656851
Author(s) / Creator(s):
;
Publisher / Repository:
OXFORD ACADEMIC
Date Published:
Journal Name:
Journal of Experimental Botany
ISSN:
0022-0957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MotivationUnderstanding the rules that govern enhancer-driven transcription remains a central unsolved problem in genomics. Now with multiple massively parallel enhancer perturbation assays published, there are enough data that we can utilize to learn to predict enhancer–promoter (EP) relationships in a data-driven manner. ResultsWe applied machine learning to one of the largest enhancer perturbation studies integrated with transcription factor (TF) and histone modification ChIP-seq. The results uncovered a discrepancy in the prediction of genome-wide data compared to data from targeted experiments. Relative strength of contact was important for prediction, confirming the basic principle of EP regulation. Novel features such as the density of the enhancers/promoters in the genomic region was found to be important, highlighting our lack of understanding on how other elements in the region contribute to the regulation. Several TF peaks were identified that improved the prediction by identifying the negatives and reducing False Positives. In summary, integrating genomic assays with enhancer perturbation studies increased the accuracy of the model, and provided novel insights into the understanding of enhancer-driven transcription. Availability and implementationThe trained models, data, and the source code are available at http://doi.org/10.5281/zenodo.11290386 and https://github.com/HanLabUNLV/sleps. 
    more » « less
  2. Sleep is important for survival, and the need for sleep is conserved across species. In the past two decades, the fruit flyDrosophila melanogasterhas emerged as a promising system in which to study the genetic, neural, and physiological bases of sleep. Through significant advances in our understanding of the regulation of sleep in flies, the field is poised to address several open questions about sleep, such as how the need for sleep is encoded, how molecular regulators of sleep are situated within brain networks, and what the functions of sleep are. Here, we describe key findings, open questions, and commonly used methods that have been used to inform existing theories and develop new ways of thinking about the function, regulation, and adaptability of sleep behavior. 
    more » « less
  3. Abstract Organic mixed ionic‐electronic conductors (OMIECs) have emerged as promising materials for a wide range of next‐generation technologies, including bioelectronics and neuromorphic computing. The performance of these materials depends on the transport of ions through the polycrystalline polymer matrix as well as how the distribution of ions and polarons in crystalline and amorphous regions impacts electronic transport. However, it is often challenging to distinguish whether ions enter crystalline or amorphous regions. In this work, steady‐state and time‐resolved photoluminescence (PL) spectroelectrochemistry is used to probe initial ion insertion in crystalline and amorphous regions of the OMIEC material poly(3‐[2‐[2‐(2‐methoxyethoxy)ethoxy]ethyl]thiophene ‐2,5‐diyl) (P3MEEET) as a function of applied voltage. It is found that PL spectroelectrochemistry reports on the initial stages of electrochemical doping through the quenching of PL emission. By distinguishing between amorphous and crystalline contributions to the PL spectrum, ion insertion in crystalline and amorphous regions as a function of voltage is tracked. It is found that PL spectroelectrochemistry is much more sensitive to the initial injection of ions than complementary methods, highlighting its potential as a sensitive tool for interrogating ion injection in OMIECs. 
    more » « less
  4. Abstract We present the firstgri-band period–luminosity (PL) and period–Wesenheit (PW) relations for the fundamental mode anomalous Cepheids. These PL and PW relations were derived from a combined sample of five anomalous Cepheids in globular cluster M92 and the Large Magellanic Cloud, both of which have distance accurate to ∼1% available from literature. Ourg-band PL relation is similar to theB-band PL relation as reported in previous study. We applied our PL and PW relations to anomalous Cepheids discovered in dwarf galaxy Crater II, and found a larger but consistent distance modulus than the recent measurements based on RR Lyrae. Our calibrations ofgri-band PL and PW relations, even though less precise due to small number of anomalous Cepheids, will be useful for distance measurements to dwarf galaxies. 
    more » « less
  5. Abstract The modulus of a polynomial-like (PL) map is an important invariant that controls distortion of the straightening map and, hence, geometry of the corresponding PL Julia set. Lower bounds on the modulus, calledcomplex a priori bounds, are known in a great variety of contexts. For any rational function we complement this by an upper bound for moduli of PL maps in the satellite case that dependsonly on the relative period and the degree of the PL map.This rules out a priori bounds in the satellite case with unbounded relative periods. We also apply our tools to obtain lower bounds for hyperbolic lengths of geodesics in the infinitely renormalizable case, and to show that moduli of annuli must converge to 0 for a sequence of arbitrary renormalizations, under several conditions all of which are shown to be necessary. 
    more » « less