Since its inception in the late 1980s, the delivery of exogenous nucleic acids into living cells via high-velocity microprojectiles (biolistic, or microparticle bombardment) has been an invaluable tool for both agricultural and fundamental plant research. Here, we review the technical aspects and the major applications of the biolistic method for studies involving transient gene expression in plant cells. These studies cover multiple areas of plant research, including gene expression, protein subcellular localization and cell-to-cell movement, plant virology, silencing, and the more recently developed targeted genome editing via transient expression of customized endonucleases.
more »
« less
This content will become publicly available on August 1, 2026
Measuring Plasmodesmata‐mediated Intercellular Trafficking Using Microparticle Bombardment in Arabidopsis and Crops
Abstract Plasmodesmata (PD) are highly specialized, nanoscopic pores that traverse the cell wall to connect the cytoplasm of adjacent plant cells, enabling direct cell‐to‐cell communication. PD provides the continuity of three key cellular components: the plasma membrane, the endoplasmic reticulum (ER), and the cytosol. The compressed ER within PD is known as the desmotubule. PD mediates the intercellular trafficking of ions, metabolites, hormones, proteins, and RNA molecules between adjacent cells. Although several methods have been developed to quantify PD‐mediated molecular trafficking, it remains a technical challenge. Among these, PD‐mediated movement of fluorescent proteins is one of the most commonly used approaches. Here we present a microparticle bombardment method using a biolistic particle delivery system to investigate the PD‐mediated movement of fluorescent proteins. We equipped the delivery system with a flow guiding barrel to improve bombardment efficiency and consistency. We demonstrated the effects of gold particle aggregation and plant age on transformation efficiency and protein movement inArabidopsis. We also showed the feasibility of the method in determining PD‐mediated movement in tomato, pepper, and soybean. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Microparticle bombardment assay for measuring plasmodesmata‐mediated trafficking
more »
« less
- Award ID(s):
- 2339067
- PAR ID:
- 10656852
- Publisher / Repository:
- WILEY
- Date Published:
- Journal Name:
- Current Protocols
- Volume:
- 5
- Issue:
- 8
- ISSN:
- 2691-1299
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Plasmodesmata (PD) allow direct communication across the cellulosic plant cell wall, facilitating the intercellular movement of metabolites and signaling molecules within the symplast. InArabidopsis thalianaembryos with reduced levels of the chloroplast RNA helicase ISE2, intercellular trafficking and the number of branched PD were increased. We therefore investigated the relationship between alteredISE2expression and intercellular trafficking.Gene expression analyses in Arabidopsis tissues whereISE2expression was increased or decreased identified genes associated with the metabolism of glucosinolates (GLSs) as highly affected.Concomitant with changes in the expression of GLS‐related genes, plants with abnormalISE2expression contained altered GLS metabolic profiles compared with wild‐type (WT) counterparts. Indeed, changes in the expression of GLS‐associated genes led to altered intercellular trafficking in Arabidopsis leaves. Exogenous application of GLSs but not their breakdown products also resulted in altered intercellular trafficking.These changes in trafficking may be mediated by callose levels at PD as exogenous GLS treatment was sufficient to modulate plasmodesmal callose in WT plants. Furthermore, auxin metabolism was perturbed in plants with increased indole‐type GLS levels. These findings suggest that GLSs, which are themselves transported between cells via PD, can act on PD to regulate plasmodesmal trafficking capacity.more » « less
-
Callose, a beta-(1,3)-D-glucan polymer, is essential for regulating intercellular trafficking via plasmodesmata (PD). Pathogens manipulate PD-localized proteins to enable intercellular trafficking by removing callose at PD, or conversely by increasing callose accumulation at PD to limit intercellular trafficking during infection. Plant defense hormones like salicylic acid regulate PD-localized proteins to control PD and intercellular trafficking during immune defense responses such as systemic acquired resistance. Measuring callose deposition at PD in plants has therefore emerged as a popular parameter for assessing likely intercellular trafficking activity during plant immunity. Despite the popularity of this metric there is no standard for how these measurements should be made. In this study, we compared three commonly used methods for identifying and quantifying PD callose by aniline blue staining were evaluated to determine the most effective in the Nicotiana benthamiana leaf model. The results reveal that the most reliable method used aniline blue staining and fluorescent microscopy to measure callose deposition in fixed tissue. Manual or semi-automated workflows for image analysis were also compared and found to produce similar results although the semi-automated workflow produced a wider distribution of data points.more » « less
-
Abstract Cell-to-cell movement is an important step for initiation and spreading of virus infection in plants. This process occurs through the intercellular connections, termed plasmodesmata (PD), and is usually mediated by one or more virus-encoded movement proteins (MP) which interact with multiple cellular factors, among them protein kinases that usually have negative effects on MP function and virus movement. In this study, we report physical and functional interaction between MP ofTobacco mosaic virus(TMV), the paradigm of PD-moving proteins, and a receptor-like kinase BAM1 from Arabidopsis and its homolog fromNicotiana benthamiana. The interacting proteins accumulated in the PD regions, colocalizing with a PD marker. Reversed genetics experiments, using BAM1 gain-of-function and loss-of-function plants, indicated that BAM1 is required for efficient spread and accumulation the virus during initial stages of infection of both plant species by TMV. Furthermore, BAM1 was also required for the efficient cell-to-cell movement of TMV MP, suggesting that BAM1 interacts with TMV MP to support early movement of the virus. Interestingly, this role of BAM1 in viral movement did not require its protein kinase activity. Thus, we propose that association of BAM1 with TMV MP at PD facilitates the MP transport through PD, which, in turn, enhances the spread of the viral infection.more » « less
-
Since its inception in the late 1980s, the delivery of exogenous nucleic acids into living cells via high-velocity micro-projectiles (biolistic, or micro-particle bombardment) has been an invaluable tool for both agricultural and fundamental plant research. Here, we review the technical aspects and the major applications of the biolistic method for studies involving transient gene expression in plant cells. These studies cover multiple areas of plant research, including gene expression, protein subcellular localization and cell-to-cell movement, plant virology, silencing and the more recently developed targeted genome editing via transient expression of customized endonuclease.more » « less
An official website of the United States government
