skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 22, 2026

Title: Quo-Vadis Multi-Agent Automotive Research? Insights from a Participatory Workshop and Questionnaire
The transition to mixed-tra!c environments that involve auto- mated vehicles, manually operated vehicles, and vulnerable road users presents new challenges for human-centered automotive re- search. Despite this, most studies in the domain focus on single- agent interactions. This paper reports on a participatory workshop (N = 15) and a questionnaire (N = 19) conducted during the Automo- tiveUI ’24 conference to explore the state of multi-agent automotive research. The participants discussed methodological challenges and opportunities in real-world settings, simulations, and computational modeling. Key "ndings reveal that while the value of multi-agent approaches is widely recognized, practical and technical barriers hinder their implementation. The study highlights the need for in- terdisciplinary methods, better tools, and simulation environments that support scalable, realistic, and ethically informed multi-agent research.  more » « less
Award ID(s):
2212431
PAR ID:
10656920
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
169 to 176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the future, roads will host a complex mix of automated and manually operated vehicles, along with vulnerable road users. However, most automotive user interfaces and human factors research focus on single-agent studies, where one human interacts with one vehicle. Only a few studies incorporate multi-agent setups. This workshop aims to (1) examine the current state of multi-agent research in the automotive domain, (2) serve as a platform for discussion toward more realistic multi-agent setups, and (3) discuss methods and practices to conduct such multi-agent research. The goal is to synthesize the insights from the AutoUI community, creating the foundation for advancing multi-agent traffic interaction research. 
    more » « less
  2. In the ever-evolving landscape of autonomous vehicles, competition and research of high-speed autonomous racing emerged as a captivating frontier, pushing the limits of perception, planning, and control. Autonomous racing presents a setup where the intersection of cutting-edge software and hardware development sparks unprecedented opportunities and confronts unique challenges. The motorsport axiom, “If everything seems under control, then you are not going fast enough,” resonates in this special issue, underscoring the demand for algorithms and hardware that can navigate at the cutting edge of control, traction, and agility. In pursuing autonomy at high speeds, the racing environment becomes a crucible, pushing autonomous vehicles to execute split-second decisions with high precision. Autonomous racing, we believe, offers a litmus test for the true capabilities of self-driving software. Just as racing has historically served as a proving ground for automotive technology, autonomous racing now presents itself as the crucible for testing self-driving algorithms. While routine driving situations dominate much of the autonomous vehicle operations, focusing on extreme situations and environments is crucial to support investigation into safety benefits. The urgency of advancing highspeed autonomy is palpable in burgeoning autonomous racing competitions like Formula Student Driverless, F1TENTH autonomous racing, Roborace, and the Indy Autonomous Challenge. These arenas provide a literal testbed for testing perception, planning, and control algorithms and symbolize the accelerating traction of autonomous racing as a proving ground for agile and safe autonomy. Our special issue focuses on cutting-edge research into software and hardware solutions for highspeed autonomous racing. We sought contributions from the robotics and autonomy communities that delve into the intricacies of head-to-head multi-agent racing: modeling vehicle dynamics at high speeds, developing advanced perception, planning, and control algorithms, as well as the demonstration of algorithms, in simulation and in real-world vehicles. While presenting recent developments for autonomous racing, we believe these special issue papers will also create an impact in the broader realm of autonomous vehicles. 
    more » « less
  3. Allocating mobility resources (e.g., shared bikes/e-scooters, ridesharing vehicles) is crucial for rebalancing the mobility demand and supply in the urban environments. We propose in this work a novel multi-agent reinforcement learning named Hierarchical Adaptive Grouping-based Parameter Sharing (HAG-PS) for dynamic mobility resource allocation. HAG-PS aims to address two important research challenges regarding multi-agent reinforcement learning for mobility resource allocation: (1) how to dynamically and adaptively share the mobility resource allocation policy (i.e., how to distribute mobility resources) across agents (i.e., representing the regional coordinators of mobility resources); and (2) how to achieve memory-efficient parameter sharing in an urban-scale setting. To address the above challenges, we have provided following novel designs within HAG-PS. To enable dynamic and adaptive parameter sharing, we have designed a hierarchical approach that consists of global and local information of the mobility resource states (e.g., distribution of mobility resources). We have developed an adaptive agent grouping approach in order to split or merge the groups of agents based on their relative closeness of encoded trajectories (i.e., states, actions, and rewards). We have designed a learnable identity (ID) embeddings to enable agent specialization beyond simple parameter copy. We have performed extensive experimental studies based on real-world NYC bike sharing data (a total of more than 1.2 million trips), and demonstrated the superior performance (e.g., improved bike availability) of HAG-PS compared with other baseline approaches. 
    more » « less
  4. Allocating mobility resources (e.g., shared bikes/e-scooters, ridesharing vehicles) is crucial for rebalancing the mobility demand and supply in the urban environments. We propose in this work a novel multi-agent reinforcement learning named Hierarchical Adaptive Grouping-based Parameter Sharing (HAG-PS) for dynamic mobility resource allocation. HAG-PS aims to address two important research challenges regarding multi-agent reinforcement learning for mobility resource allocation: (1) how to dynamically and adaptively share the mobility resource allocation policy (i.e., how to distribute mobility resources) across agents (i.e., representing the regional coordinators of mobility resources); and (2) how to achieve memory-efficient parameter sharing in an urban-scale setting. To address the above challenges, we have provided following novel designs within HAG-PS. To enable dynamic and adaptive parameter sharing, we have designed a hierarchical approach that consists of global and local information of the mobility resource states (e.g., distribution of mobility resources). We have developed an adaptive agent grouping approach in order to split or merge the groups of agents based on their relative closeness of encoded trajectories (i.e., states, actions, and rewards). We have designed a learnable identity (ID) embeddings to enable agent specialization beyond simple parameter copy. We have performed extensive experimental studies based on real-world NYC bike sharing data (a total of more than 1.2 million trips), and demonstrated the superior performance (e.g., improved bike availability) of HAG-PS compared with other baseline approaches. 
    more » « less
  5. Security is a critical challenge in emergent autonomous vehicles. However, the security challenges in automotive systems are not widely understood even in the cybersecurity community. To address this problem, we develop an adaptable exploration platform for automotive security. This platform enables users to gain hands-on experience and insights into security vulnerabilities. We discuss specic challenges and prerequisites involved in designing such an exploration tool. We demonstrate the platform’s capabilities by exploring automotive ranging sensor attacks. 
    more » « less