In highly and fully automated vehicles (AV), drivers could divert their attention to non-driving-related activities. Drivers may also take over AVs if they do not trust the way AVs drive in specific driving scenarios. Existing models have been developed to predict drivers’ takeover performance in responding to takeover requests initiated by AVs in semi-AVs. However, few models predicted driver-initiated takeover behavior in highly and fully AVs. The present study develops an attention-based multiple-input Convolutional Neural Network (CNN) to predict drivers’ takeover intention in fully AVs. The results indicated that the developed model successfully predicted takeover intentions of drivers with a precision of 0.982 and an F1-Score of.989, which were found to be substantially higher than other machine learning algorithms. The developed CNN model could be applied in improving the driving algorithms of the AV by considering drivers’ driving styles to reduce drivers’ unnecessary takeover behaviors.
more »
« less
This content will become publicly available on September 21, 2026
Socially Adaptive Autonomous Vehicles: Effects of Contingent Driving Behavior on Drivers' Experiences
Social scientists have argued that autonomous vehicles (AVs) need to act as effective social agents; they have to respond implicitly to other drivers’ behaviors as human drivers would. In this paper, we investigate how contingent driving behavior in AVs influences human drivers’ experiences. We compared three algorithmic driving models: one trained on human driving data that responds to interactions (a familiar contingent behavior) and two artificial models that intend to either always-yield or never-yield regardless of how the interaction unfolds (non-contingent behaviors). Results show a statistically significant relationship between familiar contingent behavior and positive driver experiences, reducing stress while promoting the decisive interactions that mitigate driver hesitance. The direct relationship between familiar contingency and positive experience indicates that AVs should incorporate socially familiar driving patterns through contextually-adaptive algorithms to improve the chances of successful deployment and acceptance in mixed human-AV traffic environments.
more »
« less
- Award ID(s):
- 2107111
- PAR ID:
- 10656923
- Publisher / Repository:
- ACM
- Date Published:
- Page Range / eLocation ID:
- 105 to 116
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Autonomous Vehicle (AV) technology has the potential to significantly improve driver safety. Unfortunately, driver could be reluctant to ride with AVs due to the lack of trust and acceptance of AV’s driving styles. The present study investigated the impact of driver’s driving style (aggressive/defensive) and the designed driving styles of AVs (aggressive/defensive) on driver’s trust, acceptance, and take-over behavior in fully autonomous vehicles. Thirty-two participants were classified into two groups based on their driving styles using the Aggressive Driving Scale and experienced twelve scenarios in either an aggressive AV or a defensive AV. Results revealed that drivers’ trust, acceptance, and takeover frequency were significantly influenced by the interaction effects between AV’s driving style and driver’s driving style. The findings implied that driver’s individual differences should be considered in the design of AV’s driving styles to enhance driver’s trust and acceptance of AVs and reduce undesired take over behaviors.more » « less
-
Objective This study investigated drivers’ subjective feelings and decision making in mixed traffic by quantifying driver’s driving style and type of interaction. Background Human-driven vehicles (HVs) will share the road with automated vehicles (AVs) in mixed traffic. Previous studies focused on simulating the impacts of AVs on traffic flow, investigating car-following situations, and using simulation analysis lacking experimental tests of human drivers. Method Thirty-six drivers were classified into three driver groups (aggressive, moderate, and defensive drivers) and experienced HV-AV interaction and HV-HV interaction in a supervised web-based experiment. Drivers’ subjective feelings and decision making were collected via questionnaires. Results Results revealed that aggressive and moderate drivers felt significantly more anxious, less comfortable, and were more likely to behave aggressively in HV-AV interaction than in HV-HV interaction. Aggressive drivers were also more likely to take advantage of AVs on the road. In contrast, no such differences were found for defensive drivers indicating they were not significantly influenced by the type of vehicles with which they were interacting. Conclusion Driving style and type of interaction significantly influenced drivers’ subjective feelings and decision making in mixed traffic. This study brought insights into how human drivers perceive and interact with AVs and HVs on the road and how human drivers take advantage of AVs. Application This study provided a foundation for developing guidelines for mixed transportation systems to improve driver safety and user experience.more » « less
-
Trust calibration poses a significant challenge in the interaction between drivers and automated vehicles (AVs) in the context of human-automation collaboration. To effectively calibrate trust, it becomes crucial to accurately measure drivers’ trust levels in real time, allowing for timely interventions or adjustments in the automated driving. One viable approach involves employing machine learning models and physiological measures to model the dynamic changes in trust. This study introduces a technique that leverages machine learning models to predict drivers’ real-time dynamic trust in conditional AVs using physiological measurements. We conducted the study in a driving simulator where participants were requested to take over control from automated driving in three conditions that included a control condition, a false alarm condition, and a miss condition. Each condition had eight takeover requests (TORs) in different scenarios. Drivers’ physiological measures were recorded during the experiment, including galvanic skin response (GSR), heart rate (HR) indices, and eye-tracking metrics. Using five machine learning models, we found that eXtreme Gradient Boosting (XGBoost) performed the best and was able to predict drivers’ trust in real time with an f1-score of 89.1% compared to a baseline model of K -nearest neighbor classifier of 84.5%. Our findings provide good implications on how to design an in-vehicle trust monitoring system to calibrate drivers’ trust to facilitate interaction between the driver and the AV in real time.more » « less
-
The flourishing realm of advanced driver-assistance systems (ADAS) as well as autonomous vehicles (AVs) presents exceptional opportunities to enhance safe driving. An essential aspect of this transformation involves monitoring driver behavior through observable physiological indicators, including the driver’s facial expressions, hand placement on the wheels, and the driver’s body postures. An artificial intelligence (AI) system under consideration alerts drivers about potentially unsafe behaviors using real-time voice notifications. This paper offers an all-embracing survey of neu ral network-based methodologies for studying these driver bio-metrics, presenting an exhaustive examination of their advantages and drawbacks. The evaluation includes two relevant datasets, separately categorizing ten different in-cabinet behaviors, providing a systematic classification for driver behaviors detection. The ultimate aim is to inform the development of driver behavior monitoring systems. This survey is a valuable guide for those dedicated to enhancing vehicle safety and preventing accidents caused by careless driving. The paper’s structure encompasses sections on autonomous vehicles, neural networks, driver behavior analysis methods, dataset utilization, and final findings and future suggestions, ensuring accessibility for audiences with diverse levels of understanding regarding the subject matter.more » « less
An official website of the United States government
