The rapid evolution of Software-Defined Networking (SDN) has transformed network management by decoupling the control and data planes. It provides centralized control, enhanced flexibility, and programmability of network management services. However, this centralized control introduces security vulnerabilities and challenges related to data integrity, unauthorized access, and resource management. In addition, it brings forth significant challenges in secure and scalable data storage and computational resource management. These challenges are further increased by the need for real-time processing and the ever-increasing volume of data. To address these challenges, this paper presents a scalable blockchain-based framework for security and computational resource management in SDN architectures. The proposed framework ensures decentralized and tamper-resistant data handling and utilizes smart contracts for automated resource allocation. Due to the need for advanced security and scalability in SDN networks, this work incorporates sharding to improve parallel processing capabilities. The performance of sharded versus non-sharded blockchain systems under various network conditions is evaluated. Our findings demonstrate that the sharded blockchain model enhances scalability and throughput with robust security and fault tolerance. The framework is also assessed for its performance, scalability, and security to enhance SDN resilience against data breaches, malicious activities, and inefficient resource distribution.
more »
« less
This content will become publicly available on December 4, 2026
Adaptive Sharding in Untrusted Environments
Distributed data management systems employ data sharding techniques to achieve scalability. Traditional sharding approaches typically operate under the assumption of a trusted environment, where nodes may crash,but do not act adversarially. In untrustworthy environments, however, this assumption is no longer valid. This paper presents Marlin,an adaptive scalable data management system specifically designed for untrustworthy environments. Marlinleverages data sharding to enhance scalability while dynamically redistributing data across clusters to adapt to dynamic workloads. We propose two architectures: a centralized architecture serving as a baseline, which employs hypergraph partitioning within a trusted administrative domain, and a decentralized architecture that eliminates the need for such a trusted domain by managing shards across nodes in a decentralized manner. Both architectures utilize real-time monitoring and adaptive algorithms to dynamically adjust sharding in response to workload characteristics and adversarial conditions. Experimental results show that Marlinmaintain consistent performance under diverse dynamic scenarios in untrustworthy environments by continuously optimizing shard distributions.
more »
« less
- Award ID(s):
- 2436080
- PAR ID:
- 10657072
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Management of Data
- Volume:
- 3
- Issue:
- 6
- ISSN:
- 2836-6573
- Page Range / eLocation ID:
- 1 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Blockchain is a distributed and decentralized ledger for recording transactions. It is maintained and shared among the participating nodes by utilizing cryptographic primitives. A consensus protocol ensures that all nodes agree on a unique order in which records are appended. However, current blockchain solutions are facing scalability issues. Many methods, such as Off-chain and Directed Acyclic Graph (DAG) solutions, have been proposed to address the issue. However, they have inherent drawbacks, e.g., forming para-site chains. Performance, such as throughput and latency, is also important to a blockchain system. Sharding has emerged as a good candidate that can overcome both the scalability and performance problems in blockchain. To date, there is no systematic work that analyzes the sharding protocols. To bridge this gap, this paper provides a systematic and comprehensive review on blockchain sharding techniques. We first present a general design flow of sharding protocols and then discuss key design challenges. For each challenge, we analyze and compare the techniques in state-of-the-art solutions. Finally, we discuss several potential research directions in blockchain sharding.more » « less
-
In dense RFID systems, efficient coordination of multiple readers is crucial to prevent reader-to-reader interference (RRI) and ensure optimal system performance. As the number of readers and tags increases, static frequency and time-slot assignment become insufficient to handle dynamic network conditions, leading to collisions, missed tag reads, and degraded throughput. In this paper, we propose a decentralized neigh-borhood discovery and management scheme for RFID systems operating in high-density environments. Our approach minimizes interference and improves tag read accuracy by dynamically adjusting communication parameters like frequency and time slots based on current system conditions, which are updated by periodic information exchanges among readers. Experimental results demonstrate that the proposed method significantly improves system scalability, throughput, and reliability. The proposed framework offers a scalable and adaptive solution for dense reader environments.more » « less
-
By processing sensory data in the vicinity of its generation, edge computing reduces latency, improves responsiveness, and saves network bandwidth in data-intensive applications. However, existing edge computing solutions operate under the assumption that the edge infrastructure will comprise a set of pre-deployed, custom-configured computing devices, connected by a reliable local network. Although edge computing has great potential to provision the necessary computational resources in highly dynamic and volatile environments, including disaster recovery scenes and wilderness expeditions, extant distributed system architectures in this domain are not resilient against partial failure, caused by network disconnections. In this paper, we present a novel edge computing system architecture that delivers failure-resistant and efficient applications by dynamically adapting to handle failures; if the edge server becomes unreachable, device clusters start executing the assigned tasks by communicating P2P, until the edge server becomes reachable again. Our experimental results with the reference implementation show high responsiveness and resilience in the face of partial failure. These results indicate that the presented solution can integrate the individual capacities of mobile devices into powerful edge clouds, providing efficient and reliable services for end-users in highly dynamic and volatile environments.more » « less
-
Dense RFID environments pose critical challenges such as Reader-to-Reader Interference (RRI), Reader-to-Tag Collisions (RTC), and inefficient resource utilization, which degrade system performance and scalability. Traditional Media Access Control (MAC) protocols, including CSMA and TDMA, struggle to address these issues effectively, particularly in dynamic and large-scale deployments. This paper introduces MCSMARA (Markov Decision Process (MDP)-based Carrier Sense Multiple Access with Reader Arbitration), a novel MAC protocol designed to optimize reader coordination in dense RFID networks. By leveraging an MDP framework, MCSMARA models reader state transitions and employs a utility-based arbitration mechanism to dynamically allocate frequencies and time slots. The protocol incorporates adaptive backoff and decentralized neighborhood discovery for efficient resource management without centralized control. Simulation results demonstrate that MCSMARA reduces collisions by up to 30%, improves throughput by 25%, and ensures superior scalability, supporting a large amount of readers with minimal computational overhead. These findings establish MCSMARA as a transformative solution for RFID networks in logistics, retail, and industrial IoT, with potential for extension to mobile and heterogeneous environments.more » « less
An official website of the United States government
