In the era of pervasive digital connectivity, intelligent surveillance systems (ISS) have become essential tools for ensuring public safety, protecting critical infrastructure, and deterring security threats in various environments. The current state of these systems heavily relies on the computational capabilities of mobile devices for tasks such as real-time video analysis, object detection, and tracking. However, the limited processing power and energy constraints of these devices hinder their ability to perform these tasks efficiently and effectively. The dynamic nature of the surveillance environment also adds complexity to the task-offloading process. To address this issue, mobile edge computing (MEC) comes into play by offering edge servers with higher computational capabilities and proximity to mobile devices. It enables ISS by offloading computationally intensive tasks from resource-constrained mobile devices to nearby MEC servers. Therefore, in this paper, we propose and implement an energy-efficient and cost-effective task-offloading framework in the MEC environment. The amalgamation of binary and partial task-offloading strategies is used to achieve a cost-effective and energy-efficient system. We also compare the proposed framework in MEC with mobile cloud computing (MCC) environments. The proposed framework addresses the challenge of achieving energy-efficient and cost-effective solutions in the context of MEC for ISS. The iFogSim simulator is used for implementation and simulation purposes. The simulation results show that the proposed framework reduces latency, cost, execution time, network usage, and energy consumption.
more »
« less
Reliable and efficient mobile edge computing in highly dynamic and volatile environments
By processing sensory data in the vicinity of its generation, edge computing reduces latency, improves responsiveness, and saves network bandwidth in data-intensive applications. However, existing edge computing solutions operate under the assumption that the edge infrastructure will comprise a set of pre-deployed, custom-configured computing devices, connected by a reliable local network. Although edge computing has great potential to provision the necessary computational resources in highly dynamic and volatile environments, including disaster recovery scenes and wilderness expeditions, extant distributed system architectures in this domain are not resilient against partial failure, caused by network disconnections. In this paper, we present a novel edge computing system architecture that delivers failure-resistant and efficient applications by dynamically adapting to handle failures; if the edge server becomes unreachable, device clusters start executing the assigned tasks by communicating P2P, until the edge server becomes reachable again. Our experimental results with the reference implementation show high responsiveness and resilience in the face of partial failure. These results indicate that the presented solution can integrate the individual capacities of mobile devices into powerful edge clouds, providing efficient and reliable services for end-users in highly dynamic and volatile environments.
more »
« less
- Award ID(s):
- 1649583
- PAR ID:
- 10038601
- Date Published:
- Journal Name:
- Fog and Mobile Edge Computing (FMEC), 2017 Second International Conference on
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Artificial Intelligence (AI) is moving towards the edge. Training an AI model for edge computing on a centralized server increases latency, and the privacy of edge users is jeopardized due to private data transfer through a less secure communication channels. Additionally, existing high-power computing systems are battling with memory and data transfer bottlenecks between the processor and memory. Federated Learning (FL) is a collaborative AI learning paradigm for distributed local devices that operates without transferring local data. Local participant devices share the updated network parameters with the central server instead of sending the original data. The central server updates the global AI model and deploys the model to the local clients. As the local data resides only on the edge, these devices need to be protected from cyberattacks. The Federated Intrusion Detection System (FIDS) could be a viable system to protect edge devices as opposed to a centralized protection system. However, on-device training of the model in resource constrained devices may suffer from excessive power drain, in addition to memory and area overhead. In this work we present a memristor based system for AI training on edge devices. Memristor devices are ideal candidates for processing in memory, as their dynamic resistance properties allow them to perform multiply-add operations in parallel in the analog domain with extreme efficiency. Alternatively, existing CMOS-based PIM systems are typically developed for edge inference based on pretrained weights, and are not equipped for on-chip training. We show the effectiveness of the system, where successful learning and recognition is achieved completely within edge devices. The classification accuracy of the memristor system shows negligible loss when compared a software implementation. To the best of our knowledge, this first demonstration of a memristor based federated learning system. We demonstrate the effectiveness of this system as an intrusion detection platform for edge devices, although given the flexibility of the learning algorithm, it could be used to enhance many types of on board leaning and classification applications.more » « less
-
With the wider adoption of edge computing services, intelligent edge devices, and high-speed V2X communication, compute-intensive tasks for autonomous vehicles, such as object detection using camera, LiDAR, and/or radar data, can be partially offloaded to road-side edge servers. However, data privacy becomes a major concern for vehicular edge computing, as sensitive sensor data from vehicles can be observed and used by edge servers. We aim to address the privacy problem by protecting both vehicles’ sensor data and the detection results. In this paper, we present vehicle–edge cooperative deep-learning networks with privacy protection for object-detection tasks, named vePOD for short. In vePOD, we leverage the additive secret sharing theory to develop secure functions for every layer in an object-detection convolutional neural network (CNN). A vehicle’s sensor data is split and encrypted into multiple secret shares, each of which is processed on an edge server by going through the secure layers of a detection network. The detection results can only be obtained by combining the partial results from the participating edge servers. We have developed proof-of-concept detection networks with secure layers: vePOD Faster R-CNN (two-stage detection) and vePOD YOLO (single-stage detection). Experimental results on public datasets show that vePOD does not degrade the accuracy of object detection and, most importantly, it protects data privacy for vehicles. The execution of a vePOD object-detection network with secure layers is orders of magnitude faster than the existing approaches for data privacy. To the best of our knowledge, this is the first work that targets privacy protection in object-detection tasks with vehicle–edge cooperative computing.more » « less
-
In an IoP environment, edge computing has been proposed to address the problems of resource limitations of edge devices such as smartphones as well as the high-latency, user privacy exposure and network bottleneck that the cloud computing platform solutions incur. This paper presents a context management framework comprised of sensors, mobile devices such as smartphones and an edge server to enable high performance, context-aware computing at the edge. Key features of this architecture include energy-efficient discovery of available sensors and edge services for the client, an automated mechanism for task planning and execution on the edge server, and a dynamic environment where new sensors and services may be added to the framework. A prototype of this architecture has been implemented, and an experimental evaluation using two computer vision tasks as example services is presented. Performance measurement shows that the execution of the example tasks performs quite well and the proposed framework is well suited for an edge-computing environment.more » « less
-
Connected Autonomous Vehicles (CAVs) have achieved significant improvements in recent years. The CAVs can share sensor data to improve autonomous driving performance and enhance road safety. CAV architecture depends on roadside edge servers for latency-sensitive applications. The roadside edge servers are equipped with high-performance embedded edge computing devices that perform calculations with low power requirements. As the number of vehicles varies over different times of the day and vehicles can request for different CAV applications, the computation requirements for roadside edge computing platform can also vary. Hence, a framework for dynamic deployment of edge computing platforms can ensure CAV applications’ performance and proper usage of the devices. In this paper, we propose R-CAV – a framework for drone-based roadside edge server deployment that provides roadside units (RSUs) based on the computation requirement. Our proof of concept implementation for object detection algorithm using Nvidia Jetson nano demonstrates the proposed framework's feasibility. We posit that the framework will enhance the intelligent transport system vision by ensuring CAV applications’ quality of service.more » « less
An official website of the United States government

